優(yōu)化太陽(yáng)能系統(tǒng)效率和可靠性的一種較新方法是使用連接至每個(gè)單獨(dú)太陽(yáng)能板的微型逆變器。為每個(gè)太陽(yáng)能板都安裝其自己的微型逆變器,讓系統(tǒng)可以適應(yīng)其變化的負(fù)載和空氣環(huán)境,從而為單個(gè)太陽(yáng)能板和整個(gè)系統(tǒng)提供最佳的轉(zhuǎn)換效率。微型逆變器構(gòu)架還實(shí)現(xiàn)了更簡(jiǎn)單的布線,從而實(shí)現(xiàn)更低的安裝成本。通過(guò)提高用戶太陽(yáng)能系統(tǒng)的效率可縮短系統(tǒng)的初始技術(shù)投入回報(bào)時(shí)間。
電源逆變器是太陽(yáng)能發(fā)電系統(tǒng)中關(guān)鍵的電子組件。在一些商業(yè)應(yīng)用中,這些組件連接光伏(PV)板、存儲(chǔ)電荷的電池以及局域配電系統(tǒng)或公共電網(wǎng)。圖1顯示的是一款典型的太陽(yáng)能逆變器,它從PV陣列DC輸出獲得非常低的電壓,然后將其轉(zhuǎn)換成DC電池電壓、AC線壓和配電網(wǎng)電壓的某種組合。
在一個(gè)典型的太陽(yáng)能采集系統(tǒng)中,多塊太陽(yáng)能板以并聯(lián)方式連接到一個(gè)單逆變器,該逆變器將多個(gè)PV單元的可變DC輸出轉(zhuǎn)換成一種清潔的正弦曲線50Hz或60Hz電壓源。
主要設(shè)計(jì)目標(biāo)是最大化轉(zhuǎn)換效率。這是一個(gè)復(fù)雜、反復(fù)的過(guò)程,涉及了算法(最大功率點(diǎn)追蹤算法,MPPT)以及執(zhí)行這些算法的實(shí)時(shí)控制器。
?
電源轉(zhuǎn)換最大化
?
不使用MPPT算法的逆變器只是將模塊直接連接到電池,強(qiáng)制它們?cè)陔姵仉妷合鹿ぷ?。幾乎無(wú)一例外,電池電壓并非是采集最大化可用太陽(yáng)能的理想值。
?
實(shí)施MPPT算法后,情況大為不同。本例中,模塊達(dá)到最大功率時(shí)的電壓為17V。因此,MPPT算法的作用是讓模塊工作在17V電壓下,從而獲得滿75W功率,其與電池電壓無(wú)關(guān)。
?
高效DC/DC電源轉(zhuǎn)換器將控制器輸入端的17V模塊電壓轉(zhuǎn)換為輸出端的電池電壓。由于DC/DC轉(zhuǎn)換器將17V電壓逐步降至12V,因此本例中MPPT系統(tǒng)的電池充電電流為:(VMODULE/VBATTERY)×IMODULE或(17V/12V)×4.45A = 6.30A。
?
假設(shè)DC/DC轉(zhuǎn)換器為100% 轉(zhuǎn)換效率,則1.85A充電電流增加,也即可達(dá)到42%。
?
盡管本例假定逆變器正處理來(lái)自一個(gè)單太陽(yáng)能板的能量,但傳統(tǒng)系統(tǒng)一般擁有許多連接至一個(gè)單逆變器的太陽(yáng)能板。這種拓?fù)浣Y(jié)構(gòu)在具有很多優(yōu)點(diǎn)的同時(shí)也存在一些不足,具體情況取決于應(yīng)用。
MPPT算法
?
MPPT算法主要有三種:擾動(dòng)觀察法、電導(dǎo)增量法和恒定電壓法。前兩種方法通常被稱作“爬山”法,因?yàn)樗鼈兝眠@樣一個(gè)事實(shí):MPP左側(cè)曲線不斷上升(dP/dV>0)而MPP右側(cè)曲線不斷下降(dP/dV<0)。
?
擾動(dòng)觀察法(P&O)最為常見(jiàn)。該算法以特定方向?qū)ぷ麟妷哼M(jìn)行微擾,然后對(duì)dP/dV進(jìn)行采樣。如果dP/dV為正,則算法知道其朝MPP方向調(diào)節(jié)了電壓。然后,繼續(xù)以該方向調(diào)節(jié)電壓,直到dP/dV為負(fù)。
?
P&O算法很容易實(shí)施,但有時(shí)它們會(huì)導(dǎo)致穩(wěn)定狀態(tài)運(yùn)行的MPP周圍出現(xiàn)振蕩。另外,在快速變化的空氣條件下,它們的響應(yīng)時(shí)間較長(zhǎng),甚至?xí)阱e(cuò)誤的方向追蹤。
?
電導(dǎo)增量(INC)法使用PV陣列的增量電導(dǎo)dI/dV來(lái)計(jì)算dP/dV的符號(hào)。相比P&O,INC快速追蹤變化的光照條件更加準(zhǔn)確。然而,與P&O相同,它會(huì)產(chǎn)生振蕩,并會(huì)在快速變化的空氣條件影響下變得混亂不清。另一個(gè)缺點(diǎn)是,其高復(fù)雜性增加了計(jì)算時(shí)間,并降低了采樣頻率。第三種方法是恒定電壓法,其利用這樣一個(gè)事實(shí):一般而言,VMPP/VOC的比約等于0.76。這種方法所出現(xiàn)的問(wèn)題在于它要求立刻設(shè)置 PV陣列電流為0來(lái)測(cè)量陣列的開(kāi)路電壓。這樣,陣列的工作電壓便被設(shè)置為這一測(cè)量值的76%。但是,在這期間,陣列被斷開(kāi),浪費(fèi)掉了有效能源。同時(shí)還發(fā)現(xiàn),76%開(kāi)電路電壓是一個(gè)非常接近值的同時(shí),它卻并非總是與MPP一致。
?
由于沒(méi)有一個(gè)能夠成功地滿足所有常用情景要求的MPPT算法,因此許多設(shè)計(jì)人員都會(huì)走一些彎路,它們對(duì)系統(tǒng)進(jìn)行環(huán)境條件評(píng)估然后選擇最佳的算法。實(shí)際上,有許多MPPT算法可以用,并且太陽(yáng)能板廠商提供其自己的算法也很常見(jiàn)。
?
對(duì)于一些廉價(jià)的控制器來(lái)說(shuō),執(zhí)行MPPT算法會(huì)是一項(xiàng)難以完成的任務(wù)。因?yàn)?,?a target="_blank">MCU的正??刂乒δ芤酝?,算法還要求這些控制器擁有高性能的計(jì)算能力。先進(jìn)的32位實(shí)時(shí)微控制器(例如:TI C2000平臺(tái)中的一些微控制器)就適用于眾多太陽(yáng)能應(yīng)用。
?
電源逆變器
?
使用單個(gè)逆變器具有諸多優(yōu)點(diǎn),其中最突出的是簡(jiǎn)潔性和低成本。使用MPPT算法和其他技術(shù)可提高單逆變器系統(tǒng)的效率,但只是在一定程度上。單逆變器拓?fù)涞南陆第厔?shì)明顯,但具體取決于應(yīng)用。人們最為關(guān)心的是可靠性問(wèn)題:如果一個(gè)逆變器故障,便會(huì)損失所有太陽(yáng)板產(chǎn)生的能量,直到修復(fù)或者替換該逆變器為止。
?
即使在它完美運(yùn)行時(shí),單逆變器拓?fù)浣Y(jié)構(gòu)也會(huì)對(duì)系統(tǒng)效率產(chǎn)生負(fù)面影響。在大多數(shù)情況下,每個(gè)太陽(yáng)能板都有不同的達(dá)到最大效率控制要求。決定各太陽(yáng)能板效率的一些因素包括其組件PV單元的制造差異、環(huán)境溫度差異以及陽(yáng)光陰影和方向帶來(lái)的不同程度光照(從太陽(yáng)接收的原始能量)。
?
通過(guò)為每個(gè)單獨(dú)太陽(yáng)能板都安裝一個(gè)微型逆變器而不是整個(gè)系統(tǒng)使用一個(gè)單逆變器可以進(jìn)一步提高整體系統(tǒng)轉(zhuǎn)換效率。微型逆變器拓?fù)涞闹饕锰幨?,即使在一個(gè)逆變器故障的情況下能量也會(huì)不斷得到轉(zhuǎn)換。
?
微型逆變器方法的其他一些好處包括,可以使用高精度PWM對(duì)每塊太陽(yáng)能板的轉(zhuǎn)換參數(shù)進(jìn)行調(diào)節(jié)。由于云、陰影和遮擋都會(huì)改變單個(gè)太陽(yáng)能板的輸出,因此為每塊太陽(yáng)能板安裝微型逆變器讓系統(tǒng)可以適應(yīng)不斷變化的負(fù)載。這樣做可以為單個(gè)太陽(yáng)能板以及整個(gè)系統(tǒng)提供最佳的轉(zhuǎn)換效率。
?
微型逆變器構(gòu)架要求一種專用MCU,以使每塊太陽(yáng)能板都能管理能量轉(zhuǎn)換。但是,這些額外的MCU也可用于提高系統(tǒng)和太陽(yáng)能板監(jiān)控能力。例如,大型太陽(yáng)能板發(fā)電廠受益于太陽(yáng)能板間通信,其有助于保持負(fù)載平衡,并讓系統(tǒng)管理員能夠提前規(guī)劃可以獲得的太陽(yáng)能大小——以及應(yīng)該采取的措施。然而,要利用系統(tǒng)監(jiān)控的這些好處,MCU必須集成片上通信外圍器件(CAN、SPI、UART等等),以簡(jiǎn)化同太陽(yáng)能陣列中其他微型逆變器之間的連接。
許多應(yīng)用中,使用微型逆變器拓?fù)淇蓸O大地提高總系統(tǒng)效率。在太陽(yáng)能板層面,有望獲得30%的效率提高。但由于應(yīng)用差別很大,因此“平均”系統(tǒng)級(jí)提升百分比沒(méi)有多大意義。
評(píng)論
查看更多