二極管的反向恢復過程
二極管從正向?qū)ǖ浇刂褂幸粋€反向恢復過程
在上圖所示的硅二極管電路中加入一個如下圖所示的輸入電壓。在0―t1時間內(nèi),輸入為+VF,二極管導通,電路中有電流流通。
設VD為二極管正向壓降(硅管為0.7V左右),當VF遠大于VD時,VD可略去不計,則在t1時,V1突然從+VF變?yōu)?VR。在理想情況下 ,二極管將立刻轉(zhuǎn)為截止,電路中應只有很小的反向電流。
但實際情況是,二極管并不立刻截止,而是先由正向的IF變到一個很大的反向電流IR=VR/RL,這個電流維持一段時間tS后才開始逐漸下降,再經(jīng)過tt后 ,下降到一個很小的數(shù)值0.1IR,這時二極管才進人反向截止狀態(tài)。
通常把二極管從正向?qū)ㄞD(zhuǎn)為反向截止所經(jīng)過的轉(zhuǎn)換過程稱為反向恢復過程。其中tS稱為存儲時間,tt稱為渡越時間,tre=ts+tt稱為反向恢復時間。由于反向恢復時間的存在,使二極管的開關速度受到限制。
2
產(chǎn)生反向恢復過程的原因
電荷存儲效應產(chǎn)生上述現(xiàn)象的原因是由于二極管外加正向電壓VF時,載流子不斷擴散而存儲的結果。當外加正向電壓時P區(qū)空穴向N區(qū)擴散,N區(qū)電子向P區(qū)擴散,這樣,不僅使勢壘區(qū)(耗盡區(qū))變窄,而且使載流子有相當數(shù)量的存儲,在P區(qū)內(nèi)存儲了電子,而在N區(qū)內(nèi)存儲了空穴 ,它們都是非平衡少數(shù)載流,如下圖所示。
空穴由P區(qū)擴散到N區(qū)后,并不是立即與N區(qū)中的電子復合而消失,而是在一定的路程LP(擴散長度)內(nèi),一方面繼續(xù)擴散,一方面與電子復合消失,這樣就會在LP范圍內(nèi)存儲一定數(shù)量的空穴,并建立起一定空穴濃度分布,靠近結邊緣的濃度,離結越遠,濃度越小 。正向電流越大,存儲的空穴數(shù)目越多,濃度分布的梯度也越大。電子擴散到P區(qū)的情況也類似。
我們把正向?qū)〞r,非平衡少數(shù)載流子積累的現(xiàn)象叫做電荷存儲效應。
當輸入電壓突然由+VF變?yōu)?VR時P區(qū)存儲的電子和N區(qū)存儲的空穴不會馬上消失,但它們將通過下列兩個途徑逐漸減少:
在反向電場作用下,P區(qū)電子被拉回N區(qū),N區(qū)空穴被拉回P區(qū),形成反向漂移電流IR;
與多數(shù)載流子復合。
在這些存儲電荷消失之前,PN結仍處于正向偏置,即勢壘區(qū)仍然很窄, PN結的電阻仍很小,與RL相比可以忽略,所以此時反向電流IR=(VR+VD)/RL。VD表示 PN結兩端的正向壓降,一般 VR》》VD,即 IR=VR/RL。在這段期間,IR基本上保持不變,主要由VR和RL所決定。經(jīng)過時間ts后P區(qū)和N區(qū)所存儲的電荷已顯著減小,勢壘區(qū)逐漸變寬,反向電流IR逐漸減小到正常反向飽和電流的數(shù)值,經(jīng)過時間tt,二極管轉(zhuǎn)為截止。
由上可知,二極管在開關轉(zhuǎn)換過程中出現(xiàn)的反向恢復過程,實質(zhì)上由于電荷存儲效應引起的,反向恢復時間就是存儲電荷消失所需要的時間。
二極管和一般開關的不同在于,“開”與“關”由所加電壓的極性決定,而且“開”態(tài)有微小的壓降V f,“關”態(tài)有微小的電流i0。當電壓由正向變?yōu)榉聪驎r,電流并不立刻成為(- i0),而是在一段時間ts 內(nèi),反向電流始終很大,二極管并不關斷。
經(jīng)過ts后,反向電流才逐漸變小,再經(jīng)過tf 時間,二極管的電流才成為(- i0),ts 稱為儲存時間,tf 稱為下降時間。tr= ts+ tf 稱為反向恢復時間,以上過程稱為反向恢復過程。這實際上是由電荷存儲效應引起的,反向恢復時間就是存儲電荷耗盡所需要的時間。該過程使二極管不能在快速連續(xù)脈沖下當做開關使用。如果反向脈沖的持續(xù)時間比tr 短,則二極管在正、反向都可導通,起不到開關作用。
-
二極管
+關注
關注
147文章
9627瀏覽量
166307 -
PN結
+關注
關注
8文章
481瀏覽量
48712 -
電荷
+關注
關注
1文章
628瀏覽量
36133
發(fā)布評論請先 登錄
相關推薦
評論