我們將使用輪廓分?jǐn)?shù)和一些距離指標(biāo)來執(zhí)行時(shí)間序列聚類實(shí)驗(yàn),并且進(jìn)行可視化
讓我們看看下面的時(shí)間序列:
如果沿著y軸移動(dòng)序列添加隨機(jī)噪聲,并隨機(jī)化這些序列,那么它們幾乎無法分辨,如下圖所示-現(xiàn)在很難將時(shí)間序列列分組為簇:
上面的圖表是使用以下腳本創(chuàng)建的:
# Import necessary libraries
import os
import pandas as pd
import numpy as np
# Import random module with an alias 'rand'
import random as rand
from scipy import signal
# Import the matplotlib library for plotting
import matplotlib.pyplot as plt
# Generate an array 'x' ranging from 0 to 5*pi with a step of 0.1
x = np.arange(0, 5*np.pi, 0.1)
# Generate square, sawtooth, sin, and cos waves based on 'x'
y_square = signal.square(np.pi * x)
y_sawtooth = signal.sawtooth(np.pi * x)
y_sin = np.sin(x)
y_cos = np.cos(x)
# Create a DataFrame 'df_waves' to store the waveforms
df_waves = pd.DataFrame([x, y_sawtooth, y_square, y_sin, y_cos]).transpose()
# Rename the columns of the DataFrame for clarity
df_waves = df_waves.rename(columns={0: 'time',
1: 'sawtooth',
2: 'square',
3: 'sin',
4: 'cos'})
# Plot the original waveforms against time
df_waves.plot(x='time', legend=False)
plt.show()
# Add noise to the waveforms and plot them again
for col in df_waves.columns:
if col != 'time':
for i in range(1, 10):
# Add noise to each waveform based on 'i' and a random value
df_waves['{}_{}'.format(col, i)] = df_waves[col].apply(lambda x: x + i + rand.random() * 0.25 * i)
# Plot the waveforms with added noise against time
df_waves.plot(x='time', legend=False)
plt.show()
現(xiàn)在我們需要確定聚類的基礎(chǔ)。這里有兩種方法:
把接近于一組的波形分組——較低歐幾里得距離的波形將聚在一起。
把看起來相似的波形分組——它們有相似的形狀,但歐幾里得距離可能不低
距離度量
一般來說,我們希望根據(jù)形狀對(duì)時(shí)間序列進(jìn)行分組,對(duì)于這樣的聚類-可能希望使用距離度量,如相關(guān)性,這些度量或多或少與波形的線性移位無關(guān)。
讓我們看看上面定義的帶有噪聲的波形對(duì)之間的歐幾里得距離和相關(guān)性的熱圖:
可以看到歐幾里得距離對(duì)波形進(jìn)行分組是很困難的,因?yàn)槿魏我唤M波形對(duì)的模式都是相似的。例如,除了對(duì)角線元素外,square & cos之間的相關(guān)形狀與square和square之間的相關(guān)形狀非常相似
所有的形狀都可以很容易地使用相關(guān)熱圖組合在一起——因?yàn)轭愃频牟ㄐ尉哂蟹浅8叩南嚓P(guān)性(sin-sin對(duì)),而像sin和cos這樣的波形幾乎沒有相關(guān)性。
輪廓分?jǐn)?shù)
通過上面熱圖和分析,根據(jù)高相關(guān)性分配組看起來是一個(gè)好主意,但是我們?nèi)绾味x相關(guān)閾值呢?看起來像一個(gè)迭代過程,容易出現(xiàn)不準(zhǔn)確和大量的人工工作。
在這種情況下,我們可以使用輪廓分?jǐn)?shù)(Silhouette score),它為執(zhí)行的聚類分配一個(gè)分?jǐn)?shù)。我們的目標(biāo)是使輪廓分?jǐn)?shù)最大化。
輪廓分?jǐn)?shù)(Silhouette Score)是一種用于評(píng)估聚類質(zhì)量的指標(biāo),它可以幫助你確定數(shù)據(jù)點(diǎn)是否被正確地分配到它們的簇中。較高的輪廓分?jǐn)?shù)表示簇內(nèi)數(shù)據(jù)點(diǎn)相互之間更加相似,而不同簇之間的數(shù)據(jù)點(diǎn)差異更大,這通常是良好的聚類結(jié)果。
輪廓分?jǐn)?shù)的計(jì)算方法如下:
- 對(duì)于每個(gè)數(shù)據(jù)點(diǎn) i,計(jì)算以下兩個(gè)值:- a(i):數(shù)據(jù)點(diǎn) i 到同一簇中所有其他點(diǎn)的平均距離(簇內(nèi)平均距離)。- b(i):數(shù)據(jù)點(diǎn) i 到與其不同簇中的所有簇的平均距離,取最小值(最近簇的平均距離)。
- 然后,計(jì)算每個(gè)數(shù)據(jù)點(diǎn)的輪廓系數(shù) s(i),它定義為:s(i) = frac{b(i) - a(i)}{max{a(i), b(i)}}
- 最后,計(jì)算整個(gè)數(shù)據(jù)集的輪廓分?jǐn)?shù),它是所有數(shù)據(jù)點(diǎn)的輪廓系數(shù)的平均值:text{輪廓分?jǐn)?shù)} = frac{1}{N} sum_{i=1}^{N} s(i)
其中,N 是數(shù)據(jù)點(diǎn)的總數(shù)。
輪廓分?jǐn)?shù)的取值范圍在 -1 到 1 之間,具體含義如下:
- 輪廓分?jǐn)?shù)接近1:表示簇內(nèi)數(shù)據(jù)點(diǎn)相似度高,不同簇之間的差異很大,是一個(gè)好的聚類結(jié)果。
- 輪廓分?jǐn)?shù)接近0:表示數(shù)據(jù)點(diǎn)在簇內(nèi)的相似度與簇間的差異相當(dāng),可能是重疊的聚類或者不明顯的聚類。
- 輪廓分?jǐn)?shù)接近-1:表示數(shù)據(jù)點(diǎn)更適合分配到其他簇,不同簇之間的差異相比簇內(nèi)差異更小,通常是一個(gè)糟糕的聚類結(jié)果。
一些重要的知識(shí)點(diǎn):
在所有點(diǎn)上的高平均輪廓分?jǐn)?shù)(接近1)表明簇的定義良好且明顯。
低或負(fù)的平均輪廓分?jǐn)?shù)(接近-1)表明重疊或形成不良的集群。
0左右的分?jǐn)?shù)表示該點(diǎn)位于兩個(gè)簇的邊界上。
聚類
現(xiàn)在讓我們嘗試對(duì)時(shí)間序列進(jìn)行分組。我們已經(jīng)知道存在四種不同的波形,因此理想情況下應(yīng)該有四個(gè)簇。
歐氏距離
pca = decomposition.PCA(n_components=2)
pca.fit(df_man_dist_euc)
df_fc_cleaned_reduced_euc = pd.DataFrame(pca.transform(df_man_dist_euc).transpose(),
index = ['PC_1','PC_2'],
columns = df_man_dist_euc.transpose().columns)
index = 0
range_n_clusters = [2, 3, 4, 5, 6, 7, 8]
# Iterate over different cluster numbers
for n_clusters in range_n_clusters:
# Create a subplot with silhouette plot and cluster visualization
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(15, 7)
# Set the x and y axis limits for the silhouette plot
ax1.set_xlim([-0.1, 1])
ax1.set_ylim([0, len(df_man_dist_euc) + (n_clusters + 1) * 10])
# Initialize the KMeans clusterer with n_clusters and random seed
clusterer = KMeans(n_clusters=n_clusters, n_init="auto", random_state=10)
cluster_labels = clusterer.fit_predict(df_man_dist_euc)
# Calculate silhouette score for the current cluster configuration
silhouette_avg = silhouette_score(df_man_dist_euc, cluster_labels)
print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg)
sil_score_results.loc[index, ['number_of_clusters', 'Euclidean']] = [n_clusters, silhouette_avg]
index += 1
# Calculate silhouette values for each sample
sample_silhouette_values = silhouette_samples(df_man_dist_euc, cluster_labels)
y_lower = 10
# Plot the silhouette plot
for i in range(n_clusters):
# Aggregate silhouette scores for samples in the cluster and sort them
ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
# Set the y_upper value for the silhouette plot
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
# Fill silhouette plot for the current cluster
ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plot with cluster numbers
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
y_lower = y_upper + 10 # Update y_lower for the next plot
# Set labels and title for the silhouette plot
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# Add vertical line for the average silhouette score
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# Plot the actual clusters
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(df_fc_cleaned_reduced_euc.transpose().iloc[:, 0], df_fc_cleaned_reduced_euc.transpose().iloc[:, 1],
marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k")
# Label the clusters and cluster centers
centers = clusterer.cluster_centers_
ax2.scatter(centers[:, 0], centers[:, 1], marker="o", c="white", alpha=1, s=200, edgecolor="k")
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")
# Set labels and title for the cluster visualization
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
# Set the super title for the whole plot
plt.suptitle("Silhouette analysis for KMeans clustering on sample data with n_clusters = %d" % n_clusters,
fontsize=14, fontweight="bold")
plt.savefig('sil_score_eucl.png')
plt.show()
可以看到無論分成多少簇,數(shù)據(jù)都是混合的,并不能為任何數(shù)量的簇提供良好的輪廓分?jǐn)?shù)。這與我們基于歐幾里得距離熱圖的初步評(píng)估的預(yù)期一致
相關(guān)性
pca = decomposition.PCA(n_components=2)
pca.fit(df_man_dist_corr)
df_fc_cleaned_reduced_corr = pd.DataFrame(pca.transform(df_man_dist_corr).transpose(),
index = ['PC_1','PC_2'],
columns = df_man_dist_corr.transpose().columns)
index=0
range_n_clusters = [2,3,4,5,6,7,8]
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(15, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(df_man_dist_corr) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, n_init="auto", random_state=10)
cluster_labels = clusterer.fit_predict(df_man_dist_corr)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(df_man_dist_corr, cluster_labels)
print(
"For n_clusters =",
n_clusters,
"The average silhouette_score is :",
silhouette_avg,
)
sil_score_results.loc[index,['number_of_clusters','corrlidean']] = [n_clusters,silhouette_avg]
index=index+1
sample_silhouette_values = silhouette_samples(df_man_dist_corr, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(
np.arange(y_lower, y_upper),
0,
ith_cluster_silhouette_values,
facecolor=color,
edgecolor=color,
alpha=0.7,
)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(
df_fc_cleaned_reduced_corr.transpose().iloc[:, 0],
df_fc_cleaned_reduced_corr.transpose().iloc[:, 1], marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k"
)
# for i in range(len(df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 0])):
# ax2.annotate(list(df_fc_cleaned_cleaned_reduced.transpose().index)[i],
# (df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 0][i],
# df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 1][i] + 0.2))
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(
centers[:, 0],
centers[:, 1],
marker="o",
c="white",
alpha=1,
s=200,
edgecolor="k",
)
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(
"Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"
% n_clusters,
fontsize=14,
fontweight="bold",
)
plt.show()
當(dāng)選擇的簇?cái)?shù)為4時(shí),我們可以清楚地看到分離的簇,其他結(jié)果通常比歐氏距離要好得多。
歐幾里得距離與相關(guān)廓形評(píng)分的比較
輪廓分?jǐn)?shù)表明基于相關(guān)性的距離矩陣在簇?cái)?shù)為4時(shí)效果最好,而在歐氏距離的情況下效果就不那么明顯了結(jié)論
總結(jié)
在本文中,我們研究了如何使用歐幾里得距離和相關(guān)度量執(zhí)行時(shí)間序列聚類,并觀察了這兩種情況下的結(jié)果如何變化。如果我們?cè)谠u(píng)估聚類時(shí)結(jié)合Silhouette,我們可以使聚類步驟更加客觀,因?yàn)樗峁┝艘环N很好的直觀方式來查看聚類的分離情況。
-
for循環(huán)
+關(guān)注
關(guān)注
0文章
61瀏覽量
2502
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論