RM新时代网站-首页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

你見過這樣的眼圖么——告訴你什么是PAM4?

wFVr_Hardware_1 ? 來源:未知 ? 作者:伍文輝 ? 2018-04-02 17:26 ? 次閱讀

PAM4 (4 Pulse Amplitude Modulation) 信號作為下一代數(shù)據(jù)中心中高速信號互聯(lián)的熱門信號傳輸技術,被廣泛應用于200G/400G接口的電信號或光信號傳輸。

問題一、什么是PAM4

傳統(tǒng)的數(shù)字信號最多采用的是NRZ(Non-Return-to-Zero)信號,即采用高、低兩種信號電平來表示要傳輸?shù)臄?shù)字邏輯信號的1、0信息,每個信號符號周期可以傳輸1bit的邏輯信息;而PAM信號則可以采用更多的信號電平,從而每個信號符號周期可以傳輸更多bit的邏輯信息。比如以PAM4信號來說,其采用4個不同的信號電平來進行信號傳輸,每個符號周期可以表示2個bit的邏輯信息(0、1、2、3)。下圖是典型的NRZ信號的波形、眼圖與PAM4信號的對比。

NRZ信號眼圖 PAM-4的眼圖

真可謂天下之事,合久必分,分久必合。在數(shù)字電路獨領風騷的時代,當帶寬的發(fā)展已經(jīng)到了極致的時候,利用類似模擬信號進行傳輸數(shù)字信息的手段有效提升了信號的傳輸速率。

由于PAM4信號每個符號周期可以傳輸2bit的信息,因此要實現(xiàn)同樣的信號傳輸能力,PAM4信號的符號速率只需要達到NRZ信號的一半即可,因此傳輸通道對其造成的損耗大大減小。隨著未來技術的發(fā)展,也不排除采用更多電平的PAM8甚至PAM16信號進行信息傳輸?shù)目赡苄浴?/p>

由于PAM4存在每符號2位,4符號電平和每UI 3眼圖,每個符號周期可以傳輸兩倍于NRZ的信息。

其實PAM4信號的概念并不新鮮,比如在最普遍使用的100MBase-T以太網(wǎng)中,就使用3種電平進行信號傳輸;而在無線通信領域中普遍使用的16QAM調(diào)制、32QAM調(diào)制、64QAM調(diào)制等,也都是采用多電平的基帶信號對載波信號進行調(diào)制。

PAM4信號為4電平脈沖幅度調(diào)制,可以顯示比傳統(tǒng)數(shù)字信號更多的bit邏輯信息,但其實另一方面在PAM4信號設計測試過程中遇到的挑戰(zhàn)則尤為嚴峻:

比如PAM4信號對噪聲更敏感,同樣的系統(tǒng)噪聲,PAM4信號約有9.5dB的信噪比;

比如在PAM4信號有16種切換狀態(tài),因此會導致上、下眼圖在垂直方向上的不對稱,進一步導致在交叉點處和眼高的中間處測得的眼寬并不一樣,眼圖的非線性問題也較易發(fā)生。

比如PAM4信號的雖然降低了信號的符號率,但10dB以上的通道損耗還是會使得接收端信號眼圖完全閉合,因此,對于PAM4信號,發(fā)送端的預加重和接收端的信號均衡很重要。

比如…………

Keysight擁有PAM-4測試的最完整解決方案:從仿真到測試,從發(fā)送端到接收端,從物理層測試到測試結果的大數(shù)據(jù)分析,精確而快速的表征如 IEEE 802.3bj 所描述的 PAM-4 信號,并滿足 OIF-CEI-56G 和 IEEE 400G 等開發(fā)標準所列出對未來的 PAM 信號測量需求。

1

PAM4 發(fā)送端參數(shù)測試

PAM4發(fā)射機的電氣參數(shù)測試可以使用實時示波器,也可以使用采樣示波器。對于IEEE定義的26.56G Baud信號來說,其電氣參數(shù)測試建議使用至少33GHz帶寬的4階Bessel-Thomson濾波器頻響曲線的示波器。

對于采樣示波器來說,由于其頻響曲線接近4階Bessel-Thomson濾波器形狀,所以使用33GHz以上帶寬的示波器模塊即可;

對于實時示波器來說,通常采用磚墻式頻響,為了模擬出所需的頻響曲線會犧牲一部分帶寬,所以建議使用至少50GHz以上帶寬的示波器。

下圖是可以用于PAM4信號測試的實時示波器及采樣示波器。

在發(fā)送端測試中,我們需要關注的測試參數(shù)有消光比,光調(diào)制幅度測試, TDECQ發(fā)射機色散代價,線性度測試,抖動測試等。

2

PAM4 接收容限和誤碼率測試

對于PAM4的接收端設備來說,需要驗證其對于惡劣信號的容忍程度。所以接收端測試的主要目的就是產(chǎn)生一個精確可控的惡劣信號注入到接收端,然后通過誤碼率的變化來觀測其對于惡劣信號的容忍能力。

下面這張圖是OIF CEI 4.0的Draft規(guī)范里,定義的對于56G-VSR-PAM-4的Module的接收容限測試方法。在這個測試里,如何產(chǎn)生用戶自定義或者PRBS31Q的PAM4信號、如何模擬發(fā)送端的預加重、如何注入不同的正弦抖動以及隨機抖動、如何模擬通道損耗、如何模擬相鄰通道造成的串擾,以及如何對一致性測試點處的信號進行校準和修正,都是巨大的挑戰(zhàn),要求使用的測量設備具備足夠高的靈活性和參數(shù)調(diào)整能力。

為了應對這些挑戰(zhàn),需要使用高性能的、可以支持靈活PAM4信號參數(shù)調(diào)整的誤碼儀。在進行接收容限測試時,如果被測件有內(nèi)部誤碼計數(shù)功能,可以通過內(nèi)部誤碼計數(shù)讀出此時的誤碼率;如果沒有誤碼計數(shù)功能,可以把接收的數(shù)據(jù)環(huán)回后送回給誤碼儀的誤碼檢測模塊,從而直接進行誤碼率判斷。

更復雜的接收端容限測試除了要求線性度容限的測試,還要考慮在有抖動、噪聲和碼間干擾存在的情況下接收端的接收能力。這就需要使用誤碼儀的信號發(fā)生器產(chǎn)生帶有抖動、噪聲和碼間干擾的信號并注入到接收端,然后通過內(nèi)部誤碼計數(shù)或者環(huán)回的方式來進行誤碼統(tǒng)計。這種用于注入到接收端進行容限測試的信號通常叫做壓力信號(Stress Signal)。

Keysight N4917BSCA 光接收機測試解決方案為光接收機極限測試提供了一個完整、可重復的自動化解決方案。

與依照 IEEE 802.3bs 第 121 條和第 122 條進行手動校準相比,該方案為光極限眼圖提供了可重復的校準,能夠節(jié)省數(shù)小時的校準時間。N4917BSCA 解決方案軟件能夠控制和設置所有必需的儀器,用于校準、接收機靈敏度和抖動容限測試。

3

PLTS 物理層信號完整性測試

如今,物理層結構越來越成為高速數(shù)字系統(tǒng)性能的瓶頸。在低數(shù)據(jù)速率時代,互連的電長度較短。信號完整性通常主要與驅(qū)動器和接收機相關。但是,當時鐘速度、總線速度和鏈路速度都超過千兆/秒時,物理層表征變得越來越重要。 當前數(shù)據(jù)設計人員面臨的另一項挑戰(zhàn)是:數(shù)字設計向差分拓撲發(fā)展的趨勢,他們必須對所有可能的工作模式進行分析,才能對器 件性能有一個全面的了解。

由于綜合使用時域和頻域分析變得越來越重要,因此對多個測試 系統(tǒng)的管理也變得越來越困難。是德科技的物理層測試系統(tǒng)(PLTS)專為信號完整性分析而設計,既能全面表征差分高速數(shù)字器件、又能使分析的域類型和格式滿足測試人員 的要求。

4

PAM4 信號仿真

隨著PAM4的應用越來越多,在之前的ADS版本中已經(jīng)有bit-by-bit的PAM4通道仿真方法,而在ADS2017的新版本中,更是新增了統(tǒng)計仿真的方式。

在PAM-4信號傳輸時,諸如抖動、噪聲、信道丟失和符號間干擾(ISI)等會對正常傳輸?shù)膬?nèi)容產(chǎn)生影響。此外,PAM-4的接收器體系結構為系統(tǒng)設計人員引入了很多新的概念,如:具有電壓閾值的Slicer輸出(用于確定已接收到的幅度電平);單個Slicer skew,multi-tap反饋均衡,時鐘和數(shù)據(jù)恢復等對真實PAM4設計的影響都需要在仿真設計之時考慮進去。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • pam4
    +關注

    關注

    2

    文章

    36

    瀏覽量

    14422

原文標題:你見過這樣的眼圖么——PAM4,精通400G從這里起步!

文章出處:【微信號:Hardware_10W,微信公眾號:硬件十萬個為什么】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    AMD Versal自適應SoC GTM如何用XSIM仿真和觀察PAM4信號

    PAM4(4-Level Pulse Amplitude Modulation) 的全稱是四電平脈沖幅度調(diào)制,通過種不同的電平進行信號傳輸,每個電平幅度分別對應 00、01、10 和11。每個周期
    的頭像 發(fā)表于 11-22 13:49 ?208次閱讀
    AMD Versal自適應SoC GTM如何用XSIM仿真和觀察<b class='flag-5'>PAM4</b>信號

    “又見112G” | Samtec和Keysight展示新型112 Gbps PAM4連接性

    不同類型的測試儀器。首先,我們看到 Keysight 四端口53 GHz VNA(Keysight P5028B)以112 Gbps PAM4的速度測試Samtec NovaRay?夾層連接器系統(tǒng)
    發(fā)表于 10-30 11:39 ?228次閱讀

    明明我說的是25G信號,卻讓我看12.5G的損耗?

    。 那如果25Gbps信號的損耗真的是要看到25GHz頻點的話,30dB的衰減在圖中估計只能看到黑屏和雪花了。但是實際仿真卻不是這樣依然能得到還不錯的
    發(fā)表于 10-23 09:11

    古希臘掌管224G 的神 | Samtec 224G PAM4 高速互連大合集!

    。 接下來,我們將仔細觀察Samtec的兩個224 G現(xiàn)場產(chǎn)品演示,每個演示都展示了不同的通道評估方法。第一個是全通道測量。 上圖所示演示是一個異步224 Gbps PAM4 系統(tǒng)。Synopsys
    發(fā)表于 08-07 11:43 ?2140次閱讀
    古希臘掌管224G 的神 | Samtec 224G <b class='flag-5'>PAM4</b> 高速互連大合集!

    一文了解Samtec 超微型連接器 | 可靠性極高的56 Gbps PAM4性能

    摘要/前言 PCB的板間連接器需要具有更高的機械可靠性,同時還需要在超微型外形尺寸下具有高達56 Gbps PAM4的高速性能,這種需求在緊固耐用型數(shù)據(jù)應用中越來越受到青睞。例如,工業(yè)物聯(lián)網(wǎng)、機器人
    發(fā)表于 07-24 17:47 ?1078次閱讀
    一文了解Samtec 超微型連接器 | 可靠性極高的56 Gbps <b class='flag-5'>PAM4</b>性能

    DS560MB410低功耗56Gbps PAM4 4通道線性轉接驅(qū)動數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《DS560MB410低功耗56Gbps PAM4 4通道線性轉接驅(qū)動數(shù)據(jù)表.pdf》資料免費下載
    發(fā)表于 06-28 10:09 ?0次下載
    DS560MB410低功耗56Gbps <b class='flag-5'>PAM4</b> <b class='flag-5'>4</b>通道線性轉接驅(qū)動數(shù)據(jù)表

    Samtec技術前沿 | 新型 Samtec前面板電纜系統(tǒng)帶來112 Gbps PAM4優(yōu)異性能

    摘要/前言 Samtec 有10種連接器系統(tǒng)(包括線到板和板到板)可在112 Gbps PAM4數(shù)據(jù)速率下實現(xiàn)出色的性能。112 G電纜系統(tǒng)是Samtec Flyover? 專為中板、中板到前面板
    發(fā)表于 06-12 15:13 ?356次閱讀

    SG3225EEN在PAM4光模塊和400G,QSFP-DD光模塊中的應用

    愛普生晶振SG3225EEN,156.25MHz在PAM4光模塊和QSFP-DD光模塊中的應用。光模塊市場已發(fā)展至400G光模塊,那么PAM4光模塊和400G QSFPDD光模塊有哪些區(qū)別呢
    發(fā)表于 05-10 14:41 ?0次下載

    AMD硅芯片設計中112G PAM4串擾優(yōu)化分析

    在當前高速設計中,主流的還是PAM4的設計,包括當前的56G,112G以及接下來的224G依然還是這樣。突破摩爾定律2.5D和3D芯片的設計又給高密度高速率芯片設計帶來了空間。
    發(fā)表于 03-11 14:39 ?1044次閱讀
    AMD硅芯片設計中112G <b class='flag-5'>PAM4</b>串擾優(yōu)化分析

    兩分鐘告訴什么是

    示波器儀器儀表
    安泰儀器維修
    發(fā)布于 :2024年03月04日 14:41:45

    谷景告訴電感器壞了會出現(xiàn)什么故障

    電子發(fā)燒友網(wǎng)站提供《谷景告訴電感器壞了會出現(xiàn)什么故障.docx》資料免費下載
    發(fā)表于 02-28 10:21 ?0次下載

    沒有10年工作經(jīng)驗,我猜都不會用電磁場來分析高速問題吧?

    地方出了問題。尤其是像上面的一個特定鏈路,遇到一個很大的諧振尖峰時,需要你從PCB設計上去找到這個諧振產(chǎn)生的地方和原因,能做到嗎? 時域的只能告訴
    發(fā)表于 02-01 14:48

    三星將展示16Gb GDDR7技術,重點關注PAM3優(yōu)化TRX均衡和ZQ校準

    該款高性能的 DRAM 采用 PAM3 編碼技術,兼具 PAM4 和 NRZ 的優(yōu)點,相較于 NRZ,它能夠以更高的數(shù)據(jù)傳輸率運行,且無需過高的內(nèi)存總線頻率,表現(xiàn)優(yōu)于 GDDR6,能耗及成本則低于 GDDR6X。
    的頭像 發(fā)表于 01-29 10:13 ?1020次閱讀

    如何克服PAM4調(diào)制的仿真挑戰(zhàn)呢?

    隨著5G網(wǎng)絡的發(fā)展,不斷擴大的帶寬需求要求單位時間內(nèi)傳輸更多的邏輯信息,PAM4信號技術以其較高的傳輸效率和較低的建設成本成為下一代高速信號互連的熱門信號傳輸技術。
    的頭像 發(fā)表于 01-03 15:36 ?1885次閱讀
    如何克服<b class='flag-5'>PAM4</b>調(diào)制的仿真挑戰(zhàn)呢?

    pam4和nrz區(qū)別

    在通信領域中,數(shù)字調(diào)制技術是實現(xiàn)高速數(shù)據(jù)傳輸?shù)年P鍵。主流的數(shù)字調(diào)制技術包括脈沖振幅調(diào)制(PAM)和非返回零(NRZ)調(diào)制。本文將詳細解釋PAM-4(四進制脈沖振幅調(diào)制)與NRZ(非返回零)編碼的區(qū)別
    的頭像 發(fā)表于 12-29 10:05 ?6223次閱讀
    RM新时代网站-首页