無源探頭非常適合帶寬在 50 MHz 以下的測量應用。這是因為無源探頭的輸入電容在 9 或 10 皮法 (pF) 范圍內(nèi)。這樣可以加載受測試器件。這些負載效應隨著頻率提高而增加。為了避免這種負載效應,有源探頭在無源探頭的補償衰減器和示波器輸入之間插入了一個放大器(圖 1)。
該放大器對連接電纜進行緩沖,讓電纜能夠端接到標稱值為 50 Ω 的特征阻抗。這樣可將探頭與電纜的容性負載和示波器的輸入電路隔離開。該放大器旨在最大程度減小輸入電容,標稱值為 4 pF。而補償衰減器進一步減小了此電容。為實現(xiàn) 10:1 衰減,預期的輸入電容約為 0.4 pF。但是,輸入保護電路和探頭尖端五金額外增加了電容。
Teledyne LeCroy ZS1000 1 GHz 單端有源探頭是典型的有源探頭,具有 0.9 pF 的輸入電容和 1 MΩ 的輸入電阻。
圖 1:高阻抗無源探頭和單端有源探頭的簡化原理圖,放大器對連接電纜和示波器輸入進行緩沖,同時提供低輸入電容。(圖片來源:Digi-Key Electronics)
低輸入電容擴大了有源探頭的有用頻率范圍。在圖 2 中可以看到這一點,該圖將 10:1 高阻抗無源探頭的輸入阻抗與 ZS1000 的輸入阻抗進行了比較。
圖 2:高阻抗無源探頭和 ZS1000 單端有源探頭的頻率輸入阻抗函數(shù)曲線。(圖片來源:Digi-Key Electronics)
相比無源探頭的 10 MΩ 輸入阻抗和 9.·5 pF 輸入電容,ZS1000 的輸入阻抗為 1 MΩ,輸入電容為 0.9 pF。在高于 20 kHz 的頻率下,ZS1000 的輸入阻抗高得多,因而信號負載較小。在 500 MHz 的頻率下,ZS1000 的輸入阻抗為 354 Ω,而無源探頭的輸入阻抗則為 34 Ω。
也許最好的比較方式是查看不同探頭對快速邊沿的響應差異(圖 3)。
圖 3:使用 50 Ω 直接連接、無源探頭、ZS 系列有源探頭時,示波器對快速邊沿的響應。(圖片來源:Teledyne LeCroy)
50 Ω 直接連接的響應被用作參考波形。有源探頭響應與參考波形幾乎無法區(qū)分。由于輸入電容較高,無源探頭響應有圓角。注意測量的上升時間。參考波形的上升時間(參數(shù)讀數(shù) P1)為 456 皮秒 (ps),有源探頭 (P2) 的上升時間則為 492 皮秒。無源探頭的上升時間 (P3) 為 1.8 納秒 (ns)。
在帶寬相同的情況下,有源探頭的性能通常優(yōu)于無源探頭。但還必須記住,有源探頭需要電源。由于這個原因,有源探頭幾乎針對不同制造商的示波器均提供了專用連接器。對于 ZS1000 有源探頭,它配備了 Teledyne LeCroy ProBus 接口,用于從示波器為探頭供電。該接口讓探頭與示波器連為一體,因而示波器的前面板可以感應和完全控制探頭。
與無源探頭相比,有源探頭的輸入電壓范圍也比較小。對這一點需要特別注意,以防止損壞探頭。ZS1000 探頭的輸入電壓范圍為 ±8 伏特,最大無損電壓為 20 伏特。此電壓范圍大于當前使用的任何邏輯電平的電壓需求,因而這些探頭非常適用于高速邏輯測量。
探頭配件
ZS1000 探頭附帶了多種配件(圖 4)。請注意,大多數(shù)探頭尖端和接地引線非常小。物理尺寸較小意味著電容和電感較低,這意味著受測試電路的負載較小。較長的接地引線和微型夾適用于低頻應用,它們增加的電抗并不會影響測量。
圖 4:ZS1000 1 GHz 有源探頭附帶了大量配件,包括適用于低頻信號的長接地引線,還有各種尖端,它們讓用戶能夠更容易對測試點進行操作。(圖片來源:Teledyne LeCroy)
標準探頭尖端是針對常規(guī)探測而設計的。彈針式尖端和接地引線提供了垂直順性,確保了有效接觸,而不產(chǎn)生不適當?shù)?a href="http://hljzzgx.com/v/tag/1472/" target="_blank">機械壓力。除了在最尖端處之處,IC 尖端是絕緣的,旨在防止相鄰的 IC 引腳意外短路。彎曲尖端非常適合在相鄰元器件下方進行探測,適用于探頭必須與板保持平行的應用。方針適配器傳送信號和接地引線,采用標準的 2.54 mm 引腳間距。
接地引線包括窄型和寬型接地片。接地片具有低電感接地連接的優(yōu)點。它們通常與銅墊配合使用。銅墊背側具有粘性,粘貼到 IC 上。然后,它可以直接焊接到 IC 接地引線,提供接地電感很低的連接。偏移接地的目的是連接到探頭接地插座并環(huán)繞探頭。這使探頭尖端和接地都能保持小間距,同時讓接地引線非常短。
差分探頭
差分探頭可測量兩個輸入端之間的電壓差。單端探頭可測量單個點和地面之間的電壓,而差分探頭無需接地即可測量兩個輸入端之間的電壓。當需要在不以地面為基準的開關模式電源中的線路端電路上進行測量時,這是非常有用的。
由于差分探頭測量兩個輸入端之間的差值,因此兩個輸入端共同的信號,稱為共模信號,將被抵消或幅度顯著減小。這意味著兩個輸入端共同的偏置電平、噪聲、串擾可能被抵消,至少幅度會顯著減小。
下面顯示了差分探頭的概念框圖(圖 5)。圖中包括一個受測試器件,模型為差分源,具有共模元件。
圖 5:差分探頭與受測器件概念圖,其中受測器件模型化為具有共模元件的差分源。(圖片來源:Digi-Key Electronics)
差分探頭的核心元件是差分放大器。差分放大器輸出是 + 和 – 輸入端之差。在差分放大器前面,電路看起來像是兩個單端有源探頭。如圖所示,差分探頭輸入端連接到通用差分源,包括兩個差分元件 Vp 和 Vn,還有一個共模源Vcom。
理想的差分探頭的工作方式如下:上方 (+) 探頭輸入端的電壓為 Vp + Vcom。下方 (-) 探頭輸入端的電壓為 – Vn + Vcom。將這些輸入施加到差分放大器上,會產(chǎn)生 Vp+Vn 的輸出,假定單位增益。共模信號現(xiàn)已消除。
共模信號在差分探頭中衰減的程度取決于共模抑制比 (CMRR)。CMRR 是差分探頭的差分增益與共模增益的功率比,以分貝 (dB) 表示。CMRR 通常取決于頻率,隨著頻率提高而降低,且通常指定為多個頻率。
Teledyne LeCroy ZD1000 探頭就是一例 1 GHz 帶寬差分探頭,差分輸入范圍為 ±8 伏特,在 60 Hz 頻率下 CMRR 為 60 dB(圖 6)。該探頭旨在用于 Teledyne LeCroy 示波器。其差分輸入電阻為 120 kΩ,差分輸入電容小于 1 pF。
圖 6:使用小型 IC 適配器的 ZD1000 差分探頭。這些探頭尖端一側有絕緣,以防止與相鄰 IC 引腳短路。它們還具有低電感電阻補償,以減少電感峰值。(圖片來源:Teledyne LeCroy)
ZD1000 還包括多個探頭尖端適配器,以滿足很多探測應用的需求。要記住,差分探頭的探測配置應該是對稱的,兩個輸入端都使用相同的適配器,以達到盡可能最好的 CMRR。
高電壓差分探頭
差分探頭的關鍵優(yōu)點是輸入不以地面為基準,具有衰減共模信號的能力。在測試開關模式電源器件時,這些特性也可能是非常有用的,在這種情況下,線路側不以地面為基準。高壓差分探頭,例如 Teledyne LeCroy HVD3106,適用于此類應用(圖 7)。
圖 7:Teledyne LeCroy HVD3106 探頭和相關配件的設計目的是按照 IEC/EN 61010-31:2015 標準進行安全的高壓探測。(圖片來源:Teledyne LeCroy)
該探頭的最大差分電壓為 1500 伏特。實現(xiàn)如此寬的電壓范圍的方法是在差分放大器前面使用 500:1 衰減。在 60 Hz 的頻率下,探頭的 CMRR 為 85 dB。此外,探頭及其配件的物理配置的目的是小心探測高電壓,安全等級符合 IEC/EN 61010-31:2015 標準。
結論
有源探頭具有增加帶寬和降低探頭負載的優(yōu)點。差分探頭的價值在于增加地面隔離能力,減少共模信號。而專有接口可將這些探頭完全集成到示波器用戶接口中,使得安裝和操作更加簡單。
-
放大器
+關注
關注
143文章
13583瀏覽量
213367 -
Digi-Key
+關注
關注
4文章
135瀏覽量
52621 -
無源探頭
+關注
關注
0文章
117瀏覽量
10360 -
有源探頭
+關注
關注
0文章
50瀏覽量
3328
發(fā)布評論請先 登錄
相關推薦
評論