各種新的物聯(lián)網(wǎng)應(yīng)用的增長使許多設(shè)計人員面臨在傳感器和其他電子設(shè)備之間提供電流(歐姆)隔離的挑戰(zhàn)。這種隔離對于信號完整性,系統(tǒng)保護(hù)和用戶安全至關(guān)重要,但設(shè)計人員必須選擇三種主要的隔離技術(shù):磁性,光學(xué)和電容屏障。
這些選項中的每一種都具有相似的性能特征,但在選擇它們之前,設(shè)計師需要欣賞微妙的差異。為此,本文將介紹隔離在傳感器中的作用,然后介紹各種選項,它們的不同特性以及如何應(yīng)用它們。
它還將介紹數(shù)字隔離,并提供更多示例數(shù)字隔離器。
隔離的基本要點
當(dāng)傳感器或傳感器子電路“隔離”時,它與電路的其余部分之間沒有電氣路徑,并且是基本的使用歐姆表進(jìn)行測量將顯示兩個部分之間沒有電流(圖1)。作為這種障礙的結(jié)果,挑戰(zhàn)在于將信號從隔離的子電路獲得到系統(tǒng)的其余部分。在許多情況下,還有一個額外的挑戰(zhàn):為隔離的子電路供電,而不需要通過電源子系統(tǒng)實現(xiàn)“偷偷摸摸的路徑”,這將抵消任何隔離。
圖1:在隔離系統(tǒng)中,未接地的傳感器和系統(tǒng)之間沒有電流路徑(可能接地),但信息承載能量某種類型必須從一方到另一方。 (圖片來源:Digi-Key,基于www.ee.co.za的原始材料)
隔離的原因包括:
傳感器處于“浮動”狀態(tài)不得與系統(tǒng)“接地”有任何聯(lián)系(系統(tǒng)“普通”是一個更準(zhǔn)確的術(shù)語,但“地面”是這里常用的誤稱)。
即使系統(tǒng)是電池供電的,也是如此沒有連接到“交流接地”,如果傳感器輸出位于高共模電壓(CMV)之上,則可以輸出。這個CMV會損壞其余的電子設(shè)備。例如,單個電池單元的電壓位于串聯(lián)堆疊的頂部。
傳感器可能無意中連接到高壓電源或甚至AC線路。這不僅會損壞電子設(shè)備,還會給用戶帶來風(fēng)險。
幸運的是,有一些可行的選項可以實現(xiàn)模擬傳感器隔離,提供低級和高級隔離,幾十伏到幾千伏。后者在大眾市場應(yīng)用中是必需的,例如EV/HEV,并且通常用于監(jiān)管安全要求。提供隔離的三種最常用方法是使用磁性,光學(xué)和電容技術(shù),每種技術(shù)的額定電壓均高于1000 V或更高。
這些技術(shù)在其主要性能屬性方面存在顯著重疊,但也存在一些差異。關(guān)于哪一個在應(yīng)用中最合適的決定通常是困難的。
需要考慮的因素包括帶寬,尺寸和占位面積,成本,隔離等級(伏特),壽命等級和個人“ “找到性能參數(shù)的正確平衡取決于應(yīng)用。例如,電池監(jiān)控不需要快速響應(yīng),而高速測試傳感器則需要快速響應(yīng)。
磁隔離:起點
磁性隔離使用變壓器,是最古老的技術(shù);多年來,這是唯一的技術(shù)。隔離變壓器通常具有1:1的匝數(shù)比,并且可以相當(dāng)小,因為它處理信號而不是功率,并且耗散非常低。
由于變壓器不能通過DC,也不能處理非常低的頻率(除非它有一個大的核心),要隔離的信號不能直接應(yīng)用于主(輸入)側(cè)。相反,如果需要,傳感器信號被放大,然后用于以更高的頻率(幅度調(diào)制)調(diào)制載波,或用于脈沖寬度調(diào)制(PWM)。
在輸出上(在次級側(cè),使用常規(guī)技術(shù)解調(diào)信號以提取和恢復(fù)原始信號。必須為初級側(cè)提供隔離電源,因此通常有一個獨立的專用隔離側(cè)電源,而輸出側(cè)則使用系統(tǒng)電壓軌。
早期的插入式隔離式運算放大器是AD215 ADI公司(圖2)。其功能類似于非隔離運算放大器,但它提供1500 V(rms)隔離和120 kHz帶寬。它包含一個信號調(diào)制器,變壓器和信號解調(diào)器,以及一個隔離的直流電源。所有這些都需要提供電流隔離,但允許模擬信號從輸入側(cè)傳遞到輸出側(cè)。
圖2:在AD215內(nèi)磁隔離器是一個信號調(diào)制器,變壓器和信號解調(diào)器,以及隔離的直流電源。 (圖像來源:ADI公司)
該器件具有±10 V(V)輸入/輸出范圍,額定增益范圍為1 V/V至10 V/V,并包含內(nèi)部隔離前端的DC/DC電源,因此無需單獨供電。
雖然AD215主要用于開關(guān)電源的反饋環(huán)路,但也可用于電壓監(jiān)控器,電機(jī)電流檢測和大型電池系統(tǒng),所有這些都在400 kHz帶寬內(nèi)(圖3)。
圖3:雖然主要用于AD215用于開關(guān)電源的反饋環(huán)路,也可用于電壓監(jiān)控器,電機(jī)電流檢測和大型電池系統(tǒng)。此處顯示的AD210是功能相同的AD215版本,但規(guī)格寬松; AD620是一款精密儀表放大器。 (圖片來源:ADI公司)
在此類應(yīng)用中,在測量電機(jī)檢測電阻兩端的電壓時,通常需要進(jìn)行模擬隔離,以確定通過電機(jī)的電流。這是必要的,因為檢測電阻不是以地為參考,而是“浮動”,并且相對于地可能處于非常高的電位。
這些早期的磁性隔離器件使用了離散變壓器等等。相對較大且昂貴。較新的設(shè)計使用與IC封裝兼容的專有版平面共面變壓器。例如,ADI公司的ADuM3190隔離誤差放大器采用16引腳QSOP封裝,提供2.5 kV隔離額定值。它的平面變壓器彼此平行放置,以實現(xiàn)最大的能量傳輸(圖4)。
圖4:ADuM3190隔離誤差放大器的封裝外觀并且像IC一樣處理,但是包含硅芯片和一對平面變壓器,它們彼此平行放置以實現(xiàn)最大的能量傳遞。 (圖像來源:ADI公司)
雖然它看起來像標(biāo)準(zhǔn)運算放大器,但它實際上需要輸入信號并用它來產(chǎn)生一個通過平面變壓器的PWM信號。該PWM信號在次級側(cè)被解調(diào)和濾波,以產(chǎn)生模擬輸出信號。數(shù)據(jù)手冊包括相位和增益裕量的標(biāo)準(zhǔn)運算放大器Bode圖(圖5)。使用該器件(或類似器件)的設(shè)計人員可以期望通過標(biāo)準(zhǔn)放大器環(huán)路穩(wěn)定性以及相關(guān)的建模和仿真。 Bode圖將有所幫助。
圖5:雖然它有一個復(fù)雜的,獨立的內(nèi)部架構(gòu),ADI公司的ADuM3190在設(shè)計師看來是一個傳統(tǒng)運算放大器(圖像來源:ADI公司)
ADuM3190的額定工作溫度范圍為-40°C至+ 125°C,這在某些目標(biāo)應(yīng)用中已成為現(xiàn)實。請注意,由于隔離元件是剛剛纏繞的導(dǎo)線,因此傳統(tǒng)意義上沒有“磨損”機(jī)制,除非設(shè)備的操作超出其規(guī)格。
然而,所有絕緣材料最終都會損壞在一段足夠長的時間內(nèi),由于電壓應(yīng)力,衰減速率是施加在電壓屏障上的電壓波形的大小和類型的函數(shù)。對于ADuM3190,供應(yīng)商即使在最大額定雙極AC波形下也能保證50年的使用壽命,這比單極AC或相同幅度的DC更具壓力。
光隔離:更新的選擇
磁隔離的替代方案是光隔離,這在概念上很簡單:輸入側(cè)驅(qū)動LED,LED的輸出照射在共同封裝的光電晶體管上,輸出是光電晶體管電流(圖6)。封裝內(nèi)LED和光電晶體管之間的短光路提供了所需的電流隔離。
圖6:光隔離器需要兩個有源元件:一個LED來源IR,一個光電晶體管將接收到的光子轉(zhuǎn)換成電流。電流隔離由封裝內(nèi)的光路提供。 (圖像來源:Sunpower UK)
與基于變壓器的隔離一樣,輸入信號用于在數(shù)字模式下使用PWM或其他方法調(diào)制LED電流。 Broadcom(Avago)ACPL-C87B/C87A/C870系列光隔離放大器是可用于電流檢測電阻上電壓檢測的器件的一個很好的例子(圖7)。
圖7:Broadcom ACPL-C87B/C87A/C870系列中的光隔離器針對較低電平電壓,并使用Σ-Δ調(diào)制與斬波穩(wěn)定放大器實現(xiàn)精度,準(zhǔn)確度和一致性。 (圖像來源:Broadcom)
該系列中的隔離器具有2伏輸入范圍和高1GΩ輸入阻抗。這些規(guī)格使它們非常適合電源轉(zhuǎn)換器應(yīng)用中的隔離電壓檢測要求,包括電機(jī)驅(qū)動和可再生能源系統(tǒng)。這些器件結(jié)合了光耦合技術(shù)和sigma-delta(Σ-Δ)調(diào)制,斬波穩(wěn)定放大器和差分輸出,可提供高隔離模式噪聲抑制,低失調(diào),高增益精度和穩(wěn)定性。這些器件都采用拉伸SO-8(SSO-8)封裝。
這些器件非常適合功率轉(zhuǎn)換器應(yīng)用,因為它們具有100 kHz帶寬(圖8)和高共模瞬態(tài)抗擾度(15 kV/μs)。這種瞬變在電機(jī)驅(qū)動中很常見。
圖8:使用其內(nèi)部sigma-delta模數(shù)轉(zhuǎn)換技術(shù),Broadcom ACPL-C87B/C87A/C870系列光隔離放大器可輕松實現(xiàn)100 kHz帶寬,平坦響應(yīng)可達(dá)100 kHz。 (圖像來源:Broadcom)
電容隔離:最新選項
另一種隔離技術(shù)使用電容和電容器“板”之間的微小間隔進(jìn)行隔離。由于IC和封裝技術(shù)的進(jìn)步,近年來該技術(shù)已變得可行且具有成本效益。一個很好的實現(xiàn)示例是德州儀器ISO124。這是一款精密隔離放大器,其輸入和輸出部分通過內(nèi)置于SOIC-16(或SOIC-18)表面貼裝塑料封裝中的匹配1皮法(pF)電容進(jìn)行電隔離。
與其他模擬隔離放大器一樣,其高級功能圖很簡單(圖9)。
圖9:模擬隔離放大器的一個常用符號是ISO124數(shù)據(jù)手冊中使用的“分離”運算放大器;這清楚地表明輸入和輸出部分有自己獨立的“地面”(雖然“常見”將是更正確的名稱)。 (圖像來源:德州儀器)
同時,詳細(xì)的框圖顯示了用戶內(nèi)部和不可見的復(fù)雜性(圖10)。
圖10:與磁性和光學(xué)隔離器件一樣,ISO124中有大量的模擬和數(shù)字電路,使其獨特的基于電容的隔離操作。 (圖像來源:德州儀器)
ISO124輸入是占空比調(diào)制的,并通過屏障以數(shù)字方式傳輸。輸出部分接收調(diào)制信號,將其轉(zhuǎn)換回模擬電壓并消除解調(diào)中固有的紋波分量。它具有0.010%的最大非線性,50 kHz信號帶寬和200微伏(μV)/°C VOS漂移,并且需要一個介于±4.5 V和±18 V之間的單電源。
與非隔離運算放大器,數(shù)據(jù)表包含表格數(shù)據(jù)以及有關(guān)各種條件下正弦波和階躍響應(yīng)性能的圖形信息(圖11)。這些隔離設(shè)備的潛在用戶需要研究數(shù)據(jù)和圖表,以確保設(shè)備性能與應(yīng)用程序需求相稱。
圖11:由于ISO124基于模擬器件的運算放大器性質(zhì),設(shè)計人員需要密切關(guān)注許多圖形和表格,包括標(biāo)準(zhǔn)正弦和階躍響應(yīng)圖。 (圖片來源:德州儀器)
ISO124非常適合低速應(yīng)用,例如在接收器端隔離4-20 mA電流回路上的電阻溫度檢測器(RTD)和熱電偶溫度傳感器的信號,并將其轉(zhuǎn)換為電壓(圖12)。
圖12:ISO124用于隔離通過標(biāo)準(zhǔn)4-20 mA電流回路連接的RTD,并將該電流信號轉(zhuǎn)換為0-5 V信號,用于控制系統(tǒng)兼容性。 (圖像來源:德州儀器公司)
溫度測量應(yīng)用通常要求傳感器與系統(tǒng)電路的其余部分隔離,因為它們可能直接固定在高壓點上,例如電機(jī)外殼。然后,系統(tǒng)模數(shù)轉(zhuǎn)換器(ADC)將此電壓用于讀出或閉環(huán)控制,這兩種情況都是常見的工業(yè)情況。
做出決定
所有三種模擬隔離技術(shù) - 磁性,光學(xué)和電容 - 都可以在合適的條件下提供出色的結(jié)果。設(shè)計師的困境隨后變成了如何在給定情況下決定“最佳”的那個。
要考慮的因素包括帶寬,預(yù)期壽命(故障或磨損時間),尺寸和功率要求。每種隔離技術(shù)都可以平衡這些屬性,并可能在一個系列中提供具有不同折衷的特定產(chǎn)品,從而使決策變得復(fù)雜。
關(guān)于電壓隔離的數(shù)量,所有三種類型都經(jīng)過認(rèn)證至少1 kV(一些去至5 kV甚至更高)并符合相關(guān)的監(jiān)管標(biāo)準(zhǔn)(IEEE,VDE,CIE,UL,CSA)。因此,對于大多數(shù)物聯(lián)網(wǎng)應(yīng)用而言,最大隔離電壓不是問題。如果這應(yīng)該成為一個問題,可以使用經(jīng)過認(rèn)證可以獲得更高電壓的專業(yè)隔離器。
關(guān)于每種隔離技術(shù),可以做一些一般性陳述,但對于每個聲明都有例外情況,以及供應(yīng)商每種技術(shù)都有效且合法地論證了為什么他們的方法更好。一般來說:
磁隔離具有很長的使用壽命,其無源屏障可以承受遠(yuǎn)大于連續(xù)電壓額定值的浪涌和尖峰。然而,由于其通過磁場的電感耦合,它可能易受外部磁場的干擾。一些較新的設(shè)計成功地將這個問題最小化,使得這些單元通過行業(yè)標(biāo)準(zhǔn)測試證明不具備這種干擾敏感性。
光隔離對電磁噪聲具有很高的抗擾度,但速度適中LED開關(guān)速度,功耗更高,以及對LED磨損的擔(dān)憂。最后一個問題是最嚴(yán)重的問題,因為LED在正常使用中會出現(xiàn)降級(變暗),典型的半亮度周期約為十年。然而,像Broadcom/Avago這樣的公司已經(jīng)推動了LED材料的最新技術(shù),因此保證滿足20年的規(guī)格,這通常足以滿足這種情況。
電容隔離對磁噪聲具有很高的抗擾度,與光隔離相比,它可以支持更寬的帶寬,因為沒有需要切換的LED。實際上,大多數(shù)物聯(lián)網(wǎng)傳感器應(yīng)用都是低帶寬情況。電容耦合還涉及使用電場進(jìn)行數(shù)據(jù)傳輸,因此可能容易受到外部電場的干擾。
模擬與數(shù)字隔離
到目前為止,我們已經(jīng)看過了物聯(lián)網(wǎng)傳感器的模擬隔離技術(shù)(圖13)。
圖13:在模擬隔離拓?fù)渲?,傳感器信號仍然是模擬信息(無論在隔離器本身內(nèi)發(fā)生了什么,直到它到達(dá)非隔離側(cè),在那里它可以轉(zhuǎn)換成數(shù)字格式以供進(jìn)一步使用。 (圖片來源:National Instruments)
然而,有一個基本的架構(gòu)選擇:數(shù)字隔離,模擬傳感器的輸出在隔離側(cè)進(jìn)行調(diào)節(jié)和數(shù)字化,然后數(shù)字輸出通過數(shù)字隔離屏障(圖14)。
圖14:另一種常用的方法是將隔離側(cè)的信號數(shù)字化,然后通過轉(zhuǎn)換通過數(shù)字隔離屏障產(chǎn)生。與模擬隔離設(shè)計相比,這允許實現(xiàn)非常不同的隔離功能。 (圖像來源:National Instruments)
與模擬隔離一樣,此屏障可以使用這三種技術(shù)中的任何一種,但其內(nèi)部設(shè)計專門針對數(shù)字信號進(jìn)行了優(yōu)化,通??梢灾С?jǐn)?shù)十Mbps的數(shù)據(jù)。此外,對于數(shù)字隔離,存在新的第四類選項,其使用調(diào)制的RF載波而不是調(diào)制的(LED)光。 Silicon Labs的Si863x系列是這種器件的一個很好的例子(圖15)。
圖15:硅的Si863x系列數(shù)字隔離器實驗室使用調(diào)制的RF載波代替光來傳輸信號,同時提供隔離。 (圖片來源:Silicon Labs)
隨著ADC的成本下降,供應(yīng)商已經(jīng)對I 2 C和LVDS等接口進(jìn)行了標(biāo)準(zhǔn)化,數(shù)字隔離的使用變得更具吸引力。缺點是隔離側(cè)需要更多電路。這意味著需要更多的隔離電源,增加了成本和占用空間。
然而,再次,低功耗高性能ADC的進(jìn)步使這成為一個問題。標(biāo)準(zhǔn)接口數(shù)字隔離器,例如I 2 C的1 MHz ADUM1250和來自ADI公司的LVDS的600 Mbit/sec ADN4651,簡化了這種設(shè)計方案。在多芯片IC封裝中還有集成隔離的ADC,例如16位ADI公司的AD7401A,它使整個轉(zhuǎn)換和隔離過程對用戶透明。
最后,還有一個問題。多通道隔離。雖然許多物聯(lián)網(wǎng)應(yīng)用只有一個或兩個傳感器需要隔離,但其他傳感器可能有四個,八個或更多。在這些情況下,聚合的單個模擬隔離器可能太大,成本高且耗電量大。
另一種方法是使用多通道ADC或帶有前端多路復(fù)用器的單通道器件,所有這些都是在隔離的一側(cè),采用更高速度的數(shù)字隔離來傳輸結(jié)果。這可能比簡單的每通道隔離功能,空間和成本效益更高。
結(jié)論
模擬傳感器隔離是許多物聯(lián)網(wǎng)應(yīng)用中的一個關(guān)鍵問題,用于信號完整性,系統(tǒng)安全性,以及用戶保護(hù)。三種可行的競爭技術(shù)可以實現(xiàn)隔離,每種技術(shù)在性能上提供了許多相似之處,但存在一些細(xì)微差別。在隔離側(cè)進(jìn)行傳感器數(shù)字化的數(shù)字隔離也是許多應(yīng)用中需要考慮的選擇。
-
電源
+關(guān)注
關(guān)注
184文章
17704瀏覽量
249955 -
傳感器
+關(guān)注
關(guān)注
2550文章
51035瀏覽量
753059 -
數(shù)字隔離
+關(guān)注
關(guān)注
20文章
117瀏覽量
79866
發(fā)布評論請先 登錄
相關(guān)推薦
評論