歐拉公式與三角函數(shù)
根據(jù)歐拉公式 1 ,可以輕易推出:
三角函數(shù)定義域被擴(kuò)大到了復(fù)數(shù)域。我們把復(fù)數(shù)當(dāng)作向量來看待,復(fù)數(shù)的實(shí)部是 X 方向,虛部是Y 方向,很容易觀察出其幾何意義。
歐拉公式推導(dǎo)三角函數(shù)
將三角函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里占有非常重要的地位,并且有著廣泛而重要的應(yīng)用利用歐拉公式易得:
因此,歐拉公式使指數(shù)函數(shù)和三角函數(shù)在復(fù)數(shù)域中實(shí)現(xiàn)了相互轉(zhuǎn)化.近年來,歐拉公式已被廣泛應(yīng)用到初等數(shù)學(xué)和高等數(shù)學(xué)。本文將利用歐拉公式導(dǎo)出部分三角函數(shù)公式。
1、三角函數(shù)大降冪
高次冪的正余弦函數(shù)在計(jì)算上給我們帶來諸多不便,利用歐拉公式可把高次冪的正余弦函數(shù)表示為一次冪函數(shù)的代數(shù)和,從而簡化計(jì)算。
1.1 余弦大降冪由式(2)易得:
1.2正弦大降冪由式(3)及式(2)易得:
以上所得到的降冪公式(4)(6)(8)(10)皆與數(shù)學(xué)手冊[8]中給出的降冪公式完全一致
2 、導(dǎo)出三角函數(shù)多倍角公式
根據(jù)歐拉公式(1),一方面有:
以上所得到的多倍角公式(14)(15)和(20)(21)也與數(shù)學(xué)手冊[8]中完全一致。
3、導(dǎo)出和差化積公式文[3]利用歐拉公式導(dǎo)出了兩角和(差)的正、余弦公式
4、導(dǎo)出積化和差公式利用歐拉公式易得
5、結(jié)束語
? ? ? ? ? ? 在數(shù)學(xué)歷史上有很多公式都是歐拉發(fā)現(xiàn)的,它們都叫做歐拉公式,且分散在各個數(shù)學(xué)分支之中,復(fù)變函數(shù)論里的歐拉公式是最著名的歐拉公式之一.三角函數(shù)公式眾多,類型紛繁、靈活,這給解決三角變換問題帶來了諸多不便,本文通過歐拉公式來推導(dǎo)得出的結(jié)論,不僅可以使計(jì)算方便,也有很多理論上的意義.
評論
查看更多