為每個新模型從頭開始實施并行性并不好玩。此外,優(yōu)化同步工具以獲得高性能有很大的好處。在下文中,我們將展示如何使用深度學(xué)習(xí)框架的高級 API 來執(zhí)行此操作。數(shù)學(xué)和算法與第 13.5 節(jié)中的相同。毫不奇怪,您至少需要兩個 GPU 才能運行本節(jié)的代碼。
13.6.1。玩具網(wǎng)絡(luò)
讓我們使用一個比13.5 節(jié)中的 LeNet 更有意義的網(wǎng)絡(luò) ,它仍然足夠容易和快速訓(xùn)練。我們選擇了一個 ResNet-18 變體(He et al. , 2016)。由于輸入圖像很小,我們對其進行了輕微修改。特別地,與第 8.6 節(jié)的不同之處在于,我們在開始時使用了更小的卷積核、步長和填充。此外,我們刪除了最大池化層。
#@save
def resnet18(num_classes, in_channels=1):
"""A slightly modified ResNet-18 model."""
def resnet_block(in_channels, out_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(d2l.Residual(out_channels, use_1x1conv=True,
strides=2))
else:
blk.append(d2l.Residual(out_channels))
return nn.Sequential(*blk)
# This model uses a smaller convolution kernel, stride, and padding and
# removes the max-pooling layer
net = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())
net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(64, 128, 2))
net.add_module("resnet_block3", resnet_block(128, 256, 2))
net.add_module("resnet_block4", resnet_block(256, 512, 2))
net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
net.add_module("fc", nn.Sequential(nn.Flatten(),
nn.Linear(512, num_classes)))
return net
#@save
def resnet18(num_classes):
"""A slightly modified ResNet-18 model."""
def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.Sequential()
for i in range(num_residuals):
if i == 0 and not first_block:
blk.add(d2l.Residual(
num_channels, use_1x1conv=True, strides=2))
else:
blk.add(d2l.Residual(num_channels))
return blk
net = nn.Sequential()
# This model uses a smaller convolution kernel, stride, and padding and
# removes the max-pooling layer
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),
nn.BatchNorm(), nn.Activation('relu'))
net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))
net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net
13.6.2。網(wǎng)絡(luò)初始化
我們將在訓(xùn)練循環(huán)內(nèi)初始化網(wǎng)絡(luò)。有關(guān)初始化方法的復(fù)習(xí),請參閱第 5.4 節(jié)。
net = resnet18(10)
# Get a list of GPUs
devices = d2l.try_all_gpus()
# We will initialize the network inside the training loop
The initialize
function allows us to initialize parameters on a device of our choice. For a refresher on initialization methods see Section 5.4. What is particularly convenient is that it also allows us to initialize the network on multiple devices simultaneously. Let’s try how this works in practice.
Using the split_and_load
function introduced in Section 13.5 we can divide a minibatch of data and copy portions to the list of devices provided by the devices
variable. The network instance automatically uses the appropriate GPU to compute the value of the forward propagation. Here we generate 4 observations and split them over the GPUs.
[08:00:43] src/operator/nn/./cudnn/./cudnn_algoreg-inl.h:97: Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable)
(array([[ 2.2610207e-06, 2.2045981e-06, -5.4046786e-06, 1.2869955e-06,
5.1373163e-06, -3.8297967e-06, 1.4339059e-07, 5.4683451e-06,
-2.8279192e-06, -3.9651104e-06],
[ 2.0698672e-06, 2.0084667e-06, -5.6382510e-06, 1.0498458e-06,
5.5506434e-06, -4.1065491e-06, 6.0830087e-07, 5.4521784e-06,
-3.7365021e-06, -4.1891640e-06]], ctx=gpu(0)),
array([[ 2.4629783e-06, 2.6015525e-06, -5.4362617e-06, 1.2938218e-06,
5.6387889e-06, -4.1360108e-06, 3.5758853e-07, 5.5125256e-06,
-3.1957325e-06, -4.2976326e-06],
[ 1.9431673e-06, 2.2600434e-06, -5.2698201e-06, 1.4807417e-06,
5.4830934e-06, -3.9678889e-06, 7.5751018e-08, 5.6764356e-06,
-3.2530229e-06, -4.0943951e-06]], ctx=gpu(1)))
Once data passes through the network, the corresponding parameters are initialized on the device the data passed through. This means that initialization happens on a per-device basis. Since we picked GPU 0 and GPU 1 for initialization, the network is initialized only there, and not on the CPU. In fact, the parameters do not even exist on the CPU. We can verify this by printing out the parameters and observing any errors that might arise.
not initialized on cpu
(array([[[ 0.01382882, -0.01183044, 0.01417865],
[-0.00319718, 0.00439528, 0.02562625],
[-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(0)),
array([[[ 0.01382882, -0.01183044, 0.01417865],
[-0.00319718, 0.00439528, 0.02562625],
[-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(1)))
Next, let’s replace the code to evaluate the accuracy by one that works in parallel across multiple devices. This serves as a replacement of the evaluate_accuracy_gpu
function from Section 7.6. The main difference is that we split a minibatch before invoking the network. All else is essentially identical.
#@save
def evaluate_accuracy_gpus(net, data_iter, split_f=d2l.split_batch):
"""Compute the accuracy for a model on a dataset using multiple GPUs."""
# Query the list of devices
devices = list(net.collect_params().values())[0].list_ctx()
# No. of correct predictions, no. of predictions
metric = d2l.Accumulator(2)
for features, labels in data_iter:
X_shards, y_shards = split_f(features, labels, devices)
# Run in parallel
pred_shards = [net(X_shard) for X_shard in X_shards]
metric.add(sum(float(d2l.accuracy(pred_shard, y_shard)) for
pred_shard, y_shard in zip(
pred_shards, y_shards)), labels.size)
return metric[0] / metric[1]
13.6.3。訓(xùn)練
和以前一樣,訓(xùn)練代碼需要執(zhí)行幾個基本功能以實現(xiàn)高效并行:
-
需要在所有設(shè)備上初始化網(wǎng)絡(luò)參數(shù)。
-
在迭代數(shù)據(jù)集時,小批量將被劃分到所有設(shè)備上。
-
我們跨設(shè)備并行計算損失及其梯度。
最后,我們計算精度(再次并行)以報告網(wǎng)絡(luò)的最終性能。訓(xùn)練例程與前面章節(jié)中的實現(xiàn)非常相似,只是我們需要拆分和聚合數(shù)據(jù)。
def train(net, num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
devices = [d2l.try_gpu(i) for i in range(num_gpus)]
def init_weights(module):
if type(module) in [nn.Linear, nn.Conv2d
評論
查看更多