? 大俠好,歡迎來到FPGA技術江湖,江湖偌大,相見即是緣分。大俠可以關注FPGA技術江湖,在“闖蕩江湖”、"行俠仗義"欄里獲取其他感興趣的資源,或者一起煮酒言歡。 ?
今天給大俠帶來基于FPGA的CAN總線控制器的設計,由于篇幅較長,分三篇。今天帶來第三篇,下篇,程序的仿真與測試以及總結(jié)。話不多說,上貨。
前兩篇這里也放上超鏈接:
基于FPGA的CAN總線控制器的設計(上)
基于FPGA的CAN總線控制器的設計(中)?
導讀
CAN 總線(Controller Area Network)是控制器局域網(wǎng)的簡稱,是 20 世紀 80 年代初德國 BOSCH 公司為解決現(xiàn)代汽車中眾多的控制與測試儀器之間的數(shù)據(jù)交換而開發(fā)的一種串行數(shù)據(jù)通信協(xié)議。目前,CAN 總線已經(jīng)被列入 ISO 國際標準,稱為 ISO11898。CAN 總線已經(jīng)成為工業(yè)數(shù)據(jù)通信的主流技術之一。
CAN 總線作為數(shù)字式串行通信技術,與其他同類技術相比,在可靠性、實時性和靈活性方面具有獨特的技術優(yōu)勢,主要特點如下:
?CAN 總線是一種多主總線,總線上任意節(jié)點可在任意時刻主動地向網(wǎng)絡上其他節(jié)點發(fā)送信息而不分主次,因此可在各節(jié)點之間實現(xiàn)自由通信。
?CAN 總線采用非破壞性總線仲裁技術。但多個節(jié)點同時向總線發(fā)送信息時,優(yōu)先級低的節(jié)點會主動退出發(fā)送,而最高優(yōu)先級的節(jié)點可以不受影響地繼續(xù)傳輸數(shù)據(jù),從而大大節(jié)省總線沖突的仲裁時間。即使在網(wǎng)絡負載很重的情況下也不會發(fā)生網(wǎng)絡癱瘓情況。
CAN 總線的通信介質(zhì)可以是雙絞線、同軸電纜或光導纖維,選擇靈活。
CAN 總線的通信速率可達 1Mbit/s(此時通信距離最長為 40 米),通信距離最遠可達 10km(速率在 5kbit/s 以下)。
?CAN 總線上的節(jié)點信息分成不同的優(yōu)先級,可以滿足不同級別的實時要求,高優(yōu)先級的數(shù)據(jù)可以在 134μs 內(nèi)得到傳輸。
CAN 總線通過報文濾波即可實現(xiàn)點對點、一點對多點及全局廣播等幾種方式傳送數(shù)據(jù),無需專門的調(diào)度。
?CAN 總線的數(shù)據(jù)采用短幀結(jié)構(gòu),傳輸時間短,受干擾概率低,具有極好的檢錯效果。
CAN 總線采用 CRC 檢驗并可提供相應的錯誤處理功能,保證了數(shù)據(jù)通信的可靠性。
CAN 總線上的器件可被置于無任何內(nèi)部活動的睡眠方式,相當于未連接到總線上,可以有效降低系統(tǒng)功耗。
CAN 總線上的節(jié)點在錯誤嚴重的情況下具有自動關閉輸出的功能,以使總線上其他節(jié)點的操作不受影響。CAN 總線卓越的特性、極高的可靠性和獨特的設計,特別適合工業(yè)過程中監(jiān)控設備的互連,因此,越來越受到工業(yè)界的重視,并被公認為是最有前途的現(xiàn)場總線之一。另外,CAN 總線協(xié)議已被國際標準化組織認可,技術比較成熟,控制的芯片已經(jīng)商品化,性價比高,特別適用于分布式測控系統(tǒng)之間的數(shù)通訊。
CAN 總線插卡可以任意插在 PC AT XT 兼容機上,方便地構(gòu)成分布式監(jiān)控系統(tǒng)。因此,用 FPGA 實現(xiàn) CAN 總線通信控制器具有非常重要的應用價值。本篇將通過一個實例講解利用 FPGA 實現(xiàn) CAN 總線通信控制器的實現(xiàn)方法。
第三篇內(nèi)容摘要:本篇會介紹程序的仿真與測試以及總結(jié)等相關內(nèi)容。
?
四、程序的仿真與測試
CAN 總線通信控制器的仿真程序,需要模擬數(shù)據(jù)的發(fā)送和接收。
下面是測試程序的部分代碼:
?
//連接 can_top 模塊 can_top?i_can_top( .cs_can_i(cs_can), .clk_i(clk), .rx_i(rx_and_tx), .tx_o(tx), .irq_on(irq), .clkout_o(clkout) ???????????????????); //產(chǎn)生 24 MHz 時鐘 initial begin clk=0; forever #21 clk = ~clk; end //初始化 initial begin start_tb = 0; cs_can = 0; rx = 1; extended_mode = 0; tx_bypassed = 0; rst_i = 1'b0; ale_i = 1'b0; rd_i = 1'b0; wr_i = 1'b0; port_0_o = 8'h0; port_0_en = 0; port_free = 1; rst_i = 1; #200 rst_i = 0; #200 start_tb = 1; end //產(chǎn)生延遲的 tx 信號(CAN 發(fā)送器延遲) always begin wait (tx); repeat (4*BRP) @ (posedge clk); // 4 time quants delay #1 delayed_tx = tx; wait (~tx); repeat (4*BRP) @ (posedge clk); // 4 time quants delay #1 delayed_tx = tx; end assign rx_and_tx = rx & (delayed_tx | tx_bypassed); // When this signal is on, tx is not looped back to the rx. //主程序 initial begin wait(start_tb); //設置總線時序寄存器 write_register(8'd6, {`CAN_TIMING0_SJW, `CAN_TIMING0_BRP}); write_register(8'd7, {`CAN_TIMING1_SAM, `CAN_TIMING1_TSEG2, `CAN_TIMING1_TSEG1}); // 設置時鐘分頻寄存器 extended_mode = 1'b0; write_register(8'd31, {extended_mode, 3'h0, 1'b0, 3'h0}); // Setting the normal mode (not extended) //設置接收代碼和接收寄存器 write_register(8'd16, 8'ha6); // acceptance code 0 write_register(8'd17, 8'hb0); // acceptance code 1 write_register(8'd18, 8'h12); // acceptance code 2 write_register(8'd19, 8'h30); // acceptance code 3 write_register(8'd20, 8'h0); // acceptance mask 0 write_register(8'd21, 8'h0); // acceptance mask 1 write_register(8'd22, 8'h00); // acceptance mask 2 write_register(8'd23, 8'h00); // acceptance mask 3 write_register(8'd4, 8'he8); // acceptance code write_register(8'd5, 8'h0f); // acceptance mask #10; repeat (1000) @ (posedge clk); //開關復位模式 write_register(8'd0, {7'h0, ~(`CAN_MODE_RESET)}); repeat (BRP) @ (posedge clk); // 在復位后設置總線空閑 repeat (11) send_bit(1); test_full_fifo; // test currently switched on send_frame; // test currently switched off bus_off_test; // test currently switched off forced_bus_off; // test currently switched off send_frame_basic; // test currently switched off send_frame_extended; // test currently switched off self_reception_request; // test currently switched off manual_frame_basic; // test currently switched off manual_frame_ext; // test currently switched off $display("CAN Testbench finished !"); $stop; end
?
在測試過程中通過多個任務來分別驗證程序的各個功能模塊。下面的程序用于驗證強制關閉總線任務:
?
//強制關閉總線任務 task forced_bus_off; // Forcing bus-off by writinf to tx_err_cnt register begin //切換到復位模式 write_register(8'd0, {7'h0, `CAN_MODE_RESET}); // 設置時鐘分頻寄存器 write_register(8'd31, {1'b1, 7'h0}); // Setting the extended mode (not normal) // 寫數(shù)據(jù)到寄存器中 write_register(8'd15, 255); // 切換復位模式 write_register(8'd0, {7'h0, ~(`CAN_MODE_RESET)}); #2500000; // 切換復位模式 write_register(8'd0, {7'h0, `CAN_MODE_RESET}); // 寫數(shù)據(jù)到寄存器中 write_register(8'd15, 245); //關閉復位模式 write_register(8'd0, {7'h0, ~(`CAN_MODE_RESET)}); #1000000; end endtask // forced_bus_off
?
下面的程序驗證如何發(fā)送一個基本格式的幀數(shù)據(jù):
?
//發(fā)送一個基本格式的幀 task manual_frame_basic; begin // 切換到復位模式 write_register(8'd0, {7'h0, (`CAN_MODE_RESET)}); //設置寄存器 write_register(8'd4, 8'h28); // acceptance code write_register(8'd5, 8'hff); // acceptance mask repeat (100) @ (posedge clk); // 切換復位模式 write_register(8'd0, {7'h0, ~(`CAN_MODE_RESET)}); // 模塊復位后設置總線空閑 repeat (11) send_bit(1); write_register(8'd10, 8'h55); // Writing ID[10:3] = 0x55 write_register(8'd11, 8'h57); // Writing ID[2:0] = 0x2, rtr = 1, length = 7 write_register(8'd12, 8'h00); // data byte 1 write_register(8'd13, 8'h00); // data byte 2 write_register(8'd14, 8'h00); // data byte 3 write_register(8'd15, 8'h00); // data byte 4 write_register(8'd16, 8'h00); // data byte 5 write_register(8'd17, 8'h00); // data byte 6 write_register(8'd18, 8'h00); // data byte 7 write_register(8'd19, 8'h00); // data byte 8 tx_bypassed = 1; // When this signal is on, tx is not looped back to the rx. fork begin self_reception_request_command; end begin #2200; repeat (1) //開始發(fā)送數(shù)據(jù) begin send_bit(0); // 幀起始 send_bit(0); // ID send_bit(1); // ID send_bit(0); // ID send_bit(1); // ID send_bit(0); // ID send_bit(1); // ID send_bit(0); // ID send_bit(1); // ID send_bit(0); // ID send_bit(1); // ID send_bit(0); // ID send_bit(1); // RTR send_bit(0); // IDE send_bit(0); // r0 send_bit(0); // DLC send_bit(1); // DLC send_bit(1); // DLC send_bit(1); // DLC send_bit(1); // CRC send_bit(1); // CRC send_bit(0); // CRC stuff send_bit(0); // CRC 6 send_bit(0); // CRC send_bit(0); // CRC send_bit(0); // CRC send_bit(1); // CRC stuff send_bit(0); // CRC 0 send_bit(0); // CRC send_bit(1); // CRC send_bit(0); // CRC send_bit(1); // CRC 5 send_bit(1); // CRC send_bit(0); // CRC send_bit(1); // CRC send_bit(1); // CRC b send_bit(1); // CRC DELIM send_bit(0); // ACK send_bit(1); // ACK DELIM send_bit(1); // EOF send_bit(1); // EOF send_bit(1); // EOF send_bit(1); // EOF send_bit(1); // EOF send_bit(1); // EOF send_bit(1); // EOF send_bit(1); // INTER send_bit(1); // INTER send_bit(1); // INTER end // repeat end join //從接收緩沖中讀取數(shù)據(jù) read_receive_buffer; release_rx_buffer_command; read_receive_buffer; release_rx_buffer_command; read_receive_buffer; #4000000; end endtask // manual_frame_basic
?
?
五、總結(jié)
本篇通過一個實例講解如何用 FPGA 實現(xiàn) CAN 總線通信控制器。首先講解了 CAN 總線協(xié)議的有關內(nèi)容,然后介紹了一種常用的 CAN 通信控制器 SJA1000 的主要特點。接下來講解程序的主要框架和具體代碼。最后通過一個測試程序驗證了程序。這個實例為讀者實現(xiàn)自己的 CAN總線通信控制器提供了一個可以應用的案例。
?
本篇到此結(jié)束,各位大俠有緣再見!
審核編輯:湯梓紅
評論
查看更多