完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>
標(biāo)簽 > 復(fù)位電路
復(fù)位電路是一種用來(lái)使電路恢復(fù)到起始狀態(tài)的電路設(shè)備,它的操作原理與計(jì)算器有著異曲同工之妙,只是啟動(dòng)原理和手段有所不同。
復(fù)位電路是一種用來(lái)使電路恢復(fù)到起始狀態(tài)的電路設(shè)備,它的操作原理與計(jì)算器有著異曲同工之妙,只是啟動(dòng)原理和手段有所不同。復(fù)位電路,就是利用它把電路恢復(fù)到起始狀態(tài)。就像計(jì)算器的清零按鈕的作用一樣,以便回到原始狀態(tài),重新進(jìn)行計(jì)算。
和計(jì)算器清零按鈕有所不同的是,復(fù)位電路啟動(dòng)的手段有所不同。一是在給電路通電時(shí)馬上進(jìn)行復(fù)位操作;二是在必要時(shí)可以由手動(dòng)操作;三是根據(jù)程序或者電路運(yùn)行的需要自動(dòng)地進(jìn)行。復(fù)位電路都是比較簡(jiǎn)單的大都是只有電阻和電容組合就可以辦到了,再?gòu)?fù)雜點(diǎn)就有三極管等配合程序來(lái)進(jìn)行了。
復(fù)位電路是一種用來(lái)使電路恢復(fù)到起始狀態(tài)的電路設(shè)備,它的操作原理與計(jì)算器有著異曲同工之妙,只是啟動(dòng)原理和手段有所不同。復(fù)位電路,就是利用它把電路恢復(fù)到起始狀態(tài)。就像計(jì)算器的清零按鈕的作用一樣,以便回到原始狀態(tài),重新進(jìn)行計(jì)算。
和計(jì)算器清零按鈕有所不同的是,復(fù)位電路啟動(dòng)的手段有所不同。一是在給電路通電時(shí)馬上進(jìn)行復(fù)位操作;二是在必要時(shí)可以由手動(dòng)操作;三是根據(jù)程序或者電路運(yùn)行的需要自動(dòng)地進(jìn)行。復(fù)位電路都是比較簡(jiǎn)單的大都是只有電阻和電容組合就可以辦到了,再?gòu)?fù)雜點(diǎn)就有三極管等配合程序來(lái)進(jìn)行了。
為確保微機(jī)系統(tǒng)中電路穩(wěn)定可靠工作,復(fù)位電路是必不可少的一部分,復(fù)位電路的第一功能是上電復(fù)位。一般微機(jī)電路正常工作需要供電電源為5V±5%,即4.75~5.25V。由于微機(jī)電路是時(shí)序數(shù)字電路,它需要穩(wěn)定的時(shí)鐘信號(hào),因此在電源上電時(shí),只有當(dāng)VCC超過(guò)4.75V低于5.25V以及晶體振蕩器穩(wěn)定工作時(shí),復(fù)位信號(hào)才會(huì)撤除,微機(jī)電路開(kāi)始正常工作。
單片機(jī)在啟動(dòng)時(shí)都需要復(fù)位,以使CPU及系統(tǒng)各部件處于確定的初始狀態(tài),并從初態(tài)開(kāi)始工作。89系列單片機(jī)的復(fù)位信號(hào)是從RST引腳輸入到芯片內(nèi)的施密特觸發(fā)器中的。當(dāng)系統(tǒng)處于正常工作狀態(tài)時(shí),且振蕩器穩(wěn)定后,如果RST引腳上有一個(gè)高電平并維持2個(gè)機(jī)器周期(24個(gè)振蕩周期)以上,則CPU就可以響應(yīng)并將系統(tǒng)復(fù)位。單片機(jī)系統(tǒng)的復(fù)位方式有:手動(dòng)按鈕復(fù)位和上電復(fù)位。
1、手動(dòng)按鈕復(fù)位
手動(dòng)按鈕復(fù)位需要人為在復(fù)位輸入端RST上加入高電平(圖1)。一般采用的辦法是在RST端和正電源Vcc之間接一個(gè)按鈕。當(dāng)人為按下按鈕時(shí),則Vcc的+5V電平就會(huì)直接加到RST端。手動(dòng)按鈕復(fù)位的電路如所示。由于人的動(dòng)作再快也會(huì)使按鈕保持接通達(dá)數(shù)十毫秒,所以,完全能夠滿足復(fù)位的時(shí)間要求。
2、上電復(fù)位
AT89C51的上電復(fù)位電路如圖2所示,只要在RST復(fù)位輸入引腳上接一電容至Vcc端,下接一個(gè)電阻到地即可。對(duì)于CMOS型單片機(jī),由于在RST端內(nèi)部有一個(gè)下拉電阻,故可將外部電阻去掉,而將外接電容減至1uF。上電復(fù)位的工作過(guò)程是在加電時(shí),復(fù)位電路通過(guò)電 容加給RST端一個(gè)短暫的高電平信號(hào),此高電平信號(hào)隨著Vcc對(duì)電容的充電過(guò)程而逐漸回落,即RST端的高電平持續(xù)時(shí)間取決于電容的充電時(shí)間。為了保證系統(tǒng)能夠可靠地復(fù)位,RST端的高電平信號(hào)必須維持足夠長(zhǎng)的時(shí)間。上電時(shí),Vcc的上升時(shí)間約為10ms,而振蕩器的起振時(shí)間取決于振蕩頻率,如晶振頻率為10MHz,起振時(shí)間為1ms;晶振頻率為1MHz,起振時(shí)間則為10ms。在圖2的復(fù)位電路中,當(dāng)Vcc掉電時(shí),必然會(huì)使RST端電壓迅速下降到0V以下,但是,由于內(nèi)部電路的限制作用,這個(gè)負(fù)電壓將不會(huì)對(duì)器件產(chǎn)生損害。另外,在復(fù)位期間,端口引腳處于隨機(jī)狀態(tài),復(fù)位后,系統(tǒng)將端口置為全“l”態(tài)。如果系統(tǒng)在上電時(shí)得不到有效的復(fù)位,則程序計(jì)數(shù)器PC將得不到一個(gè)合適的初值,因此,CPU可能會(huì)從一個(gè)未被定義的位置開(kāi)始執(zhí)行程序。
3、積分型上電復(fù)位
常用的上電或開(kāi)關(guān)復(fù)位電路如圖3所示。上電后,由于電容C3的充電和反相門的作用,使RST持續(xù)一段時(shí)間的高電平。當(dāng)單片機(jī)已在運(yùn)行當(dāng)中時(shí),按下復(fù)位鍵K后松開(kāi),也能使RST為一段時(shí)間的高電平,從而實(shí)現(xiàn)上電或開(kāi)關(guān)復(fù)位的操作。
根據(jù)實(shí)際操作的經(jīng)驗(yàn),下面給出這種復(fù)位電路的電容、電阻參考值。
C=1uF,Rl=lk,R2=10k
單片機(jī)17種常見(jiàn)電路設(shè)計(jì)模塊
1、雙路232通信電路 3線連接方式,對(duì)應(yīng)的是母頭,工作電壓5V,可以使用MAX202或MAX232. 2、三極管串口通信 本電路是用三極管搭的,電路簡(jiǎn)...
前言 最近看advanced fpga 以及fpga設(shè)計(jì)實(shí)戰(zhàn)演練中有講到復(fù)位電路的設(shè)計(jì),才知道復(fù)位電路有這么多的門道,而不是簡(jiǎn)單的外界信號(hào)輸入系統(tǒng)復(fù)位。...
復(fù)位電路是一種電子電路,用于將微控制器或其他電子設(shè)備重置到其初始狀態(tài)。這種電路通常在設(shè)備啟動(dòng)時(shí)或在需要清除當(dāng)前狀態(tài)以避免錯(cuò)誤時(shí)使用。 1. 上電復(fù)位(P...
復(fù)位電路的電容多大的 復(fù)位電路設(shè)計(jì)類型有哪幾種
復(fù)位電路是電子系統(tǒng)中的一個(gè)關(guān)鍵部分,它確保系統(tǒng)在啟動(dòng)或發(fā)生故障時(shí)能夠正確地初始化。復(fù)位電路的設(shè)計(jì)取決于多種因素,包括系統(tǒng)的復(fù)雜性、所需的復(fù)位時(shí)間、以及是...
在現(xiàn)代電子系統(tǒng)中,復(fù)位電路扮演著至關(guān)重要的角色。它負(fù)責(zé)在系統(tǒng)啟動(dòng)時(shí)或在某些異常情況下將系統(tǒng)重置到一個(gè)預(yù)定義的初始狀態(tài)。這種重置機(jī)制確保了系統(tǒng)的穩(wěn)定性和可...
2024-10-21 標(biāo)簽:微控制器邏輯電路電子系統(tǒng) 297 0
復(fù)位電路(Reset Circuit)是現(xiàn)代電子設(shè)備中常見(jiàn)的一種關(guān)鍵電路,它用于確保在正確的時(shí)間和條件下將系統(tǒng)恢復(fù)到初始狀態(tài)。復(fù)位電路的設(shè)計(jì)和應(yīng)用對(duì)于保...
2024-10-18 標(biāo)簽:寄存器電子設(shè)備電子系統(tǒng) 1584 0
復(fù)位電路靜電整改案例分享(一)——交換機(jī)復(fù)位電路
? ?復(fù)位電路靜電整改案例分享(一)——交換機(jī)復(fù)位電路 一、摘要 復(fù)位電路可確保電路在啟動(dòng)時(shí)處于可控的狀態(tài),避免上電造成的未知問(wèn)題。復(fù)位電路通常由一個(gè)復(fù)...
在51單片機(jī)的復(fù)位電路中,電容的放電過(guò)程是實(shí)現(xiàn)復(fù)位功能的關(guān)鍵環(huán)節(jié)之一。以下是關(guān)于51單片機(jī)復(fù)位電路中電容放電的介紹: 放電過(guò)程 電容充電狀態(tài) :在單片機(jī)...
單片機(jī)復(fù)位電路中電容的作用及選擇原則如下: 一、電容的作用 提供穩(wěn)定電源 : 當(dāng)單片機(jī)啟動(dòng)時(shí),它需要一個(gè)干凈、穩(wěn)定的電源來(lái)確保正常操作。復(fù)位電路中的電容...
單片機(jī)復(fù)位電路中的電容是一種特殊類型的電容,通常被稱為“去耦電容”或“旁路電容”。這種電容的主要作用是在單片機(jī)的電源線路中提供一個(gè)低阻抗的路徑,以便在電...
類別:電子資料 2024-10-28 標(biāo)簽:dsp復(fù)位電路TMS320C6000
單相計(jì)量芯片RN8209C_D_E用戶手冊(cè)立即下載
類別:測(cè)試測(cè)量 2023-12-11 標(biāo)簽:寄存器模擬電源復(fù)位電路
HOLTEK新推出HT68RV032/033/034語(yǔ)音OTP MCU
Holtek針對(duì)語(yǔ)音應(yīng)用推出I/O語(yǔ)音OTP MCU HT68RV032/HT68RV033/HT68RV034,最大特點(diǎn)為內(nèi)建2/4/8Mbit Vo...
復(fù)位電路的電阻電容分別有什么作用? 復(fù)位電路是一種用于恢復(fù)電子設(shè)備正常工作狀態(tài)的電路。它通過(guò)將電子設(shè)備的各個(gè)部件恢復(fù)到初始狀態(tài),同時(shí)清除電路中的臨時(shí)存儲(chǔ)...
STM32無(wú)法進(jìn)入片上Bootloader的處理方法
STM32無(wú)法進(jìn)入片上Bootloader的處理方法? 當(dāng)STM32芯片無(wú)法進(jìn)入片上Bootloader時(shí),我們需要采取一系列的處理方法來(lái)解決這個(gè)問(wèn)題。...
2024-02-02 標(biāo)簽:STM32復(fù)位電路bootloader 2043 0
單片機(jī)復(fù)位電路工作原理? 單片機(jī)是一種集成電路,通常用于嵌入式系統(tǒng)中。單片機(jī)復(fù)位電路是單片機(jī)可靠工作的保證,它負(fù)責(zé)在出現(xiàn)故障或者異常情況時(shí)將單片機(jī)恢復(fù)到...
2023-12-07 標(biāo)簽:單片機(jī)嵌入式系統(tǒng)復(fù)位電路 4377 0
RC復(fù)位電路中R如何影響芯片復(fù)位? RC復(fù)位電路是常見(jiàn)的一種復(fù)位電路,它通過(guò)串聯(lián)一個(gè)電阻和一個(gè)電容元件來(lái)實(shí)現(xiàn)對(duì)芯片的復(fù)位功能。在RC電路中,電容元件起到...
2023-10-25 標(biāo)簽:復(fù)位電路RC復(fù)位電路 1271 0
單片機(jī)的復(fù)位電路是怎樣工作的 單片機(jī)中復(fù)位電路的作用及方式
單片機(jī)的復(fù)位電路是怎樣工作的 單片機(jī)中復(fù)位電路的作用及方式? 單片機(jī)的復(fù)位電路又稱為系統(tǒng)復(fù)位電路,其主要作用是使單片機(jī)向一種確定的狀態(tài)信號(hào)進(jìn)行復(fù)位,使其...
單片機(jī)上位復(fù)位電路與按鍵與上電復(fù)位的區(qū)別
單片機(jī)上位復(fù)位電路與按鍵與上電復(fù)位的區(qū)別? 單片機(jī)的復(fù)位電路常用于保證單片機(jī)在復(fù)位狀態(tài)下正常工作,以便單片機(jī)能夠在正確的起始狀態(tài)下啟動(dòng)。常見(jiàn)的單片機(jī)復(fù)位...
詳細(xì)介紹復(fù)位電路設(shè)計(jì)和問(wèn)題分析
在仿真的時(shí)候,信號(hào)在初始狀態(tài)是未知狀態(tài)(也就是所謂的x,不過(guò)對(duì)信號(hào)初始化之后的這種情況除外,因?yàn)榉抡娴臅r(shí)候?qū)π盘?hào)初始化就使信號(hào)有了初始值,這就不是x了)。
怎樣設(shè)計(jì)一個(gè)簡(jiǎn)單的MM32F5277E9PV開(kāi)發(fā)板
最小系統(tǒng)是 MM32F5 能夠工作的電路設(shè)計(jì),包括 MM32F5 系列的芯片,去耦電容,復(fù)位電路,外部時(shí)鐘電路(可選)以及電源。
編輯推薦廠商產(chǎn)品技術(shù)軟件/工具OS/語(yǔ)言教程專題
電機(jī)控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動(dòng)駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無(wú)刷電機(jī) | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機(jī) | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
步進(jìn)電機(jī) | SPWM | 充電樁 | IPM | 機(jī)器視覺(jué) | 無(wú)人機(jī) | 三菱電機(jī) | ST |
伺服電機(jī) | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國(guó)民技術(shù) | Microchip |
Arduino | BeagleBone | 樹(shù)莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |