RM新时代网站-首页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

SiC MOSFET碳化硅芯片的設(shè)計(jì)和制造

向欣電子 ? 2023-04-07 11:16 ? 次閱讀

來(lái)源:碳化硅芯觀察

對(duì)于碳化硅MOSFET(SiC MOSFET)而言,高質(zhì)量的襯底可以從外部購(gòu)買得到,高質(zhì)量的外延片也可以從外部購(gòu)買到,可是這只是具備了獲得一個(gè)碳化硅器件的良好基礎(chǔ),高性能的碳化硅器件對(duì)于器件的設(shè)計(jì)和制造工藝有著極高的要求。這篇文章將為您介紹SiC MOSFET器件設(shè)計(jì)和制造流程并展示onsemi在這方面的創(chuàng)新技術(shù)與成果。

Die Layout


芯片表面一般是如圖二所示,由源極焊盤(Source pad),柵極焊盤(Gate Pad)開(kāi)爾文源極焊盤(Kelvin Source Pad)構(gòu)成。有一些只有Gate pad,如上圖的芯片就沒(méi)有Kelvin source pad。
01113262-d1fc-11ed-ad0d-dac502259ad0.png

圖二.芯片表面

在這里我們仔細(xì)觀察芯片的周圍有一個(gè)很窄的環(huán)形,它的作用主要是提升芯片的耐壓,我們叫耐壓環(huán)(Edge termination Ring),通常是JTE結(jié)構(gòu),其實(shí)一個(gè)芯片主要就是由三部分構(gòu)成:Terminal Ring,Gate Pad,Kelvin Source Pad和開(kāi)關(guān)單元(Active Cell)。芯片外圍一圈是耐壓環(huán),Gate pad把柵極信號(hào)傳遞到每一個(gè)Cell上面,然后里面是上百萬(wàn)個(gè)Active Cell。通常大家關(guān)注比較多的是Active Cell,因?yàn)樾酒拈_(kāi)關(guān)和導(dǎo)通性能主要是和Active Cell有比較大的關(guān)系。在這里我們把芯片的layout還有各個(gè)部分的作用特點(diǎn)總結(jié)一下,這樣方便大家對(duì)芯片有一個(gè)更好的認(rèn)識(shí)。

耐壓環(huán)

(Edge termination Ring)

環(huán)繞著芯片的開(kāi)關(guān)單元,目前大多數(shù)采用JTE結(jié)構(gòu);

有效控制漏電流,提高SiC器件的可靠性和穩(wěn)定性;

減小電場(chǎng)集中效應(yīng),提高SiC器件的擊穿電壓,SiC MOSFET的擊穿電壓和具體的每一個(gè)開(kāi)關(guān)單元有關(guān),同時(shí)和耐壓環(huán)也有很大的關(guān)系;

防止離子遷移,JTE技術(shù)可以用于抑制移動(dòng)離子的漂移,從而提高SiC MOSFET的可靠性和穩(wěn)定性。


其實(shí)耐壓環(huán)的最主要的作用就是提升芯片的耐壓,SiC MOSFET的耐壓和Active Cell有關(guān)系,但是芯片邊緣的場(chǎng)強(qiáng)很大,及其容易導(dǎo)致邊緣擊穿,所以這就是JTE的作用所在。在一些高壓的器件中,甚至JTE的面積會(huì)大于Active Cell的面積。

柵極焊盤,開(kāi)爾文源極焊盤

(Gate Pad,Kelvin Source Pad )

柵極pad主要作用就一個(gè),把柵極的信號(hào)傳輸?shù)礁鱾€(gè)開(kāi)關(guān)單元,同時(shí)提一下,安森美的芯片是集成了柵極電阻的,這樣在模塊封裝上可以節(jié)省空間和一些成本。

開(kāi)爾文源極主要是增加了開(kāi)關(guān)速度,減小開(kāi)關(guān)損耗。不過(guò)在做并聯(lián)使用的時(shí)候,就需要特別的設(shè)計(jì)來(lái)使用它。

開(kāi)關(guān)單元

(Active Cell)

電流導(dǎo)通和關(guān)閉的路徑;

所有的單元是并聯(lián);

固定的單元特性下,單元的數(shù)量決定了整個(gè)芯片的導(dǎo)通電阻大小和短路電流能力;

目前主要分為平面和溝槽兩種結(jié)構(gòu)。

現(xiàn)在,我們已經(jīng)對(duì)SiC MOSFET的表面layout有了認(rèn)識(shí),在SiC的芯片里Edge terminal和Active Cell是非常重要的兩部分,安森美在JTE的設(shè)計(jì)上具有豐富的經(jīng)驗(yàn),在SiC MOSET上已經(jīng)從M1發(fā)展到了M3,通過(guò)幾代的技術(shù)迭代發(fā)展,JTE設(shè)計(jì)仿真和制造非常的成熟。我們來(lái)總結(jié)一下JTE的一些特點(diǎn)和一些設(shè)計(jì)考慮因素。

SiC JTE(結(jié)延伸區(qū))是用于改善硅碳化物(SiC)功率器件電壓阻斷能力的結(jié)構(gòu)。SiC JTE的設(shè)計(jì)對(duì)于實(shí)現(xiàn)所需的擊穿電壓并避免因器件邊緣處高電場(chǎng)而導(dǎo)致的過(guò)早擊穿至關(guān)重要。

以下是SiC JTE設(shè)計(jì)的一些關(guān)鍵考慮因素:

1. JTE區(qū)域的寬度和摻雜:JTE區(qū)域的寬度和摻雜濃度確定器件邊緣處的電場(chǎng)分布。較寬和重?fù)絁TE區(qū)域可以減少電場(chǎng)并提高擊穿電壓。

2. JTE的錐角和深度:JTE的錐角和深度影響電場(chǎng)分布和擊穿電壓。較小的錐角和較深的JTE可以減少電場(chǎng)并提高擊穿電壓。

3. 表面鈍化:表面鈍化層對(duì)于減少表面泄漏并提高擊穿電壓非常重要。需要特別為SiC JTE器件精心設(shè)計(jì)和優(yōu)化鈍化層。

4. 熱設(shè)計(jì):SiC JTE器件可以在比其Si對(duì)應(yīng)物更高的溫度下工作。但是,高溫也可能降低器件性能和可靠性。因此,在SiC JTE設(shè)計(jì)過(guò)程中應(yīng)考慮熱設(shè)計(jì),如散熱和熱應(yīng)力。

總體而言,SiC JTE設(shè)計(jì)是一個(gè)復(fù)雜的過(guò)程,涉及各種設(shè)計(jì)參數(shù)之間的權(quán)衡。需要進(jìn)行仔細(xì)的優(yōu)化和仿真,以實(shí)現(xiàn)所需的器件性能和可靠性。

Active Cell開(kāi)關(guān)單元 – SiC MOSFET的核心

我們可以把MOSFET(硅和碳化硅)根據(jù)它們的柵極結(jié)構(gòu)分成兩類:平面結(jié)構(gòu)溝槽結(jié)構(gòu),它們的示意圖如圖三所示。如果從結(jié)構(gòu)上來(lái)說(shuō),硅和碳化硅MOSFET是一樣的,但是從制造工藝和設(shè)計(jì)上來(lái)說(shuō),由于碳化硅材料和硅材料的特性導(dǎo)致它們要考慮的點(diǎn)大部分都不太一樣。比如SiC大量使用了干蝕刻(Dry etch),還有高溫離子注入工藝,注入的元素也不一樣。

01856efc-d1fc-11ed-ad0d-dac502259ad0.png0192f75c-d1fc-11ed-ad0d-dac502259ad0.png

圖三.MOSFET的平面結(jié)構(gòu)與溝槽結(jié)構(gòu)

當(dāng)前國(guó)際上的SiC MOSFET絕大部分都采用了圖三A的平面結(jié)構(gòu),有少部分的廠家采用了圖三B的溝槽結(jié)構(gòu)。從發(fā)展的角度來(lái)看,最終都會(huì)衍生到溝槽結(jié)構(gòu)。但是目前的平面結(jié)構(gòu)的潛力還是可以繼續(xù)深挖的,而溝槽結(jié)構(gòu)也沒(méi)有表現(xiàn)出它們應(yīng)當(dāng)有的水平,在這里我們引入一個(gè)統(tǒng)一的尺度來(lái)衡量它們的性能 - Rsp(Rdson * area),標(biāo)識(shí)的是單位面積里的導(dǎo)通電阻大小。平面結(jié)構(gòu)的SiC MOSFET具有可靠性高,設(shè)計(jì)加工簡(jiǎn)單的優(yōu)點(diǎn)

安森美用在汽車主驅(qū)逆變器里的SiC MOSFET的Rsp 從第一代M1的4.2 m? * cm2降低到M2的2.6 m? * cm2,目前的最新的M3e常溫下的Rsp性能和友商的溝槽結(jié)構(gòu)的SiC MOSFET的水平一致,而高溫下的Rsp則低于友商溝槽結(jié)構(gòu)SiC MOSFET的Rsp,達(dá)到了行業(yè)領(lǐng)先的水平。M3e的cell pitch值和目前的溝槽結(jié)構(gòu)的SiC MOSFET pitch值相當(dāng),這表明安森美在平面結(jié)構(gòu)的SiC MOSFET發(fā)展優(yōu)化到了一個(gè)相當(dāng)高的水平。當(dāng)然一個(gè)MOSFET的性能不僅僅看Rsp,還要考慮開(kāi)關(guān)損耗。通過(guò)前幾代的SiC MOSFET發(fā)展,以及根據(jù)大量的客戶應(yīng)用反饋,SiC MOSFET器件優(yōu)化了導(dǎo)通損耗、開(kāi)通損耗、反向恢復(fù)損耗以及短路時(shí)間,使得它們?cè)诳蛻舻膽?yīng)用中達(dá)到最優(yōu)化的一個(gè)效率。

SiC MOSFET的平面結(jié)構(gòu)的Active Cell的設(shè)計(jì)制造方向主要是減小開(kāi)關(guān)單元間距也就是pitch值,提升開(kāi)關(guān)單元的密度,減小Rdson,提升柵極氧化層的可靠性。

如圖三A中的結(jié)構(gòu)為了盡可能的減小導(dǎo)通電阻,需要調(diào)整開(kāi)關(guān)單元的間距,pitch值和Wg也就是柵極的寬度有一定的關(guān)系,pitch值變小,Wg也相應(yīng)變小,這個(gè)對(duì)于柵極的可靠性是有一定好處的,在SiC MOSFET里,柵極氧化層(Gate Oxide)非常的薄,小于100納米,因此在SiC的生產(chǎn)工藝中使用了干式蝕刻的方法來(lái)控制加工的精度。

根據(jù)圖三A中的導(dǎo)通電阻示意圖,我們可以得出Rdson = Rs + Rch + Ra + Rjfet + Rdrif + Rsub, 在這里面Rch和Ra占比最大,超過(guò)60%以上,所以它們變成了設(shè)計(jì)和工藝優(yōu)化的一個(gè)重點(diǎn)方向之一。不過(guò)也不是一味的減小開(kāi)關(guān)單元柵極的寬度就可以減小Rsp,柵極的Wg寬度減小到一定范圍,反而會(huì)導(dǎo)致Rsp變大,在設(shè)計(jì)的時(shí)候需要綜合考慮以上的參數(shù)相互之間的影響,這樣才能獲得一個(gè)比較理想的優(yōu)化結(jié)果,安森美經(jīng)過(guò)幾代的工藝迭代發(fā)展,其平面結(jié)構(gòu)的SiC MOSFET上已經(jīng)在性能,良率、可靠性等方面發(fā)展得相對(duì)成熟。

在芯片里,每個(gè)active cell是并聯(lián)在一起的,圖四是一個(gè)芯片的截面圖的示意圖,在這里采用的是帶狀結(jié)構(gòu)的布局。從這里大家會(huì)對(duì)于芯片可以有更形象的了解。

01856efc-d1fc-11ed-ad0d-dac502259ad0.png

01c09cca-d1fc-11ed-ad0d-dac502259ad0.png

圖四.芯片的截面圖

以下是SiC MOSFET Rdson設(shè)計(jì)的一些關(guān)鍵考慮因素:

1. 通道寬度和摻雜:SiC MOSFET的通道寬度和摻雜濃度會(huì)影響Rdson和電流密度。較寬和重?fù)降耐ǖ揽梢越档蚏dson并提高電流承載能力。

2. 柵極氧化層厚度:柵極氧化層的厚度影響柵極電容,進(jìn)而影響開(kāi)關(guān)速度和Rdson。較薄的柵極氧化物可以提高開(kāi)關(guān)速度,但也可能增加?xùn)艠O漏電流,并增加氧化層擊穿失效的風(fēng)險(xiǎn)。

3. 柵極設(shè)計(jì):柵極設(shè)計(jì)影響柵極電阻,進(jìn)而影響開(kāi)關(guān)速度和Rdson。較低的柵極電阻可以提高開(kāi)關(guān)速度,但也可能增加?xùn)艠O電容。

總體而言,SiC MOSFET Rdson設(shè)計(jì)是一個(gè)復(fù)雜的過(guò)程,涉及綜合考慮各個(gè)參數(shù)之間的相互影響。需要進(jìn)行仔細(xì)的優(yōu)化和仿真并且進(jìn)行試驗(yàn)和測(cè)試,以實(shí)現(xiàn)所需的器件性能和可靠性。

集成片上柵極電阻

所有針對(duì)主驅(qū)逆變器開(kāi)發(fā)的SiC MOSFET都集成了柵極的電阻,我們可以從圖五看到有無(wú)電阻的區(qū)別。圖五A是不需要柵極電阻(芯片上集成了),圖五B是需要額外加一個(gè)柵極電阻。

0225c816-d1fc-11ed-ad0d-dac502259ad0.png

圖五.有無(wú)柵極電阻的區(qū)別

集成柵極電阻會(huì)給模塊設(shè)計(jì)和制造帶來(lái)一些好處:

簡(jiǎn)化了模塊綁定線的工藝,降低了失效率。

減少了焊接電阻到DBC的工藝

降低了BOM和制造成本

便于封裝的相對(duì)小型化設(shè)計(jì)和制造

SiC MOSFET的設(shè)計(jì)制造工藝非常復(fù)雜,本文對(duì)其流程與一些關(guān)鍵考慮因素進(jìn)行了簡(jiǎn)要介紹,希望能讓大家對(duì)SiC MOSFET的設(shè)計(jì)和制造有一個(gè)概念。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    455

    文章

    50714

    瀏覽量

    423132
  • 碳化硅
    +關(guān)注

    關(guān)注

    25

    文章

    2748

    瀏覽量

    49017
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    為什么碳化硅MOSFET特別需要米勒鉗位

    各位小伙伴,不久前我們推送了“SiC科普小課堂”視頻課——《什么是米勒鉗位?為什么碳化硅MOSFET特別需要米勒鉗位?》后反響熱烈,很多朋友留言詢問(wèn)課件資料。今天,我們將這期視頻的圖文講義奉上,方便大家更詳盡地了解在驅(qū)動(dòng)
    的頭像 發(fā)表于 12-19 11:39 ?450次閱讀
    為什么<b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>特別需要米勒鉗位

    碳化硅SiC在高溫環(huán)境下的表現(xiàn)

    碳化硅SiC)在高溫環(huán)境下的表現(xiàn)非常出色,這得益于其獨(dú)特的物理和化學(xué)性質(zhì)。以下是對(duì)碳化硅在高溫環(huán)境下表現(xiàn)的分析: 一、高溫穩(wěn)定性 碳化硅具有極高的熔點(diǎn),其熔點(diǎn)遠(yuǎn)高于硅等傳統(tǒng)半導(dǎo)體材料
    的頭像 發(fā)表于 11-25 16:37 ?418次閱讀

    碳化硅SiC制造工藝詳解 碳化硅SiC與傳統(tǒng)半導(dǎo)體對(duì)比

    碳化硅SiC制造工藝詳解 碳化硅SiC)作為一種高性能的半導(dǎo)體材料,其制造工藝涉及多個(gè)復(fù)雜步驟
    的頭像 發(fā)表于 11-25 16:32 ?1012次閱讀

    碳化硅SiC材料應(yīng)用 碳化硅SiC的優(yōu)勢(shì)與性能

    碳化硅SiC材料應(yīng)用 1. 半導(dǎo)體領(lǐng)域 碳化硅制造高性能半導(dǎo)體器件的理想材料,尤其是在高頻、高溫、高壓和高功率的應(yīng)用中。SiC基半導(dǎo)體器件
    的頭像 發(fā)表于 11-25 16:28 ?461次閱讀

    SiC MOSFETSiC SBD的區(qū)別

    SiC MOSFET碳化硅金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管)和SiC SBD(碳化硅肖特基勢(shì)壘二極管)是兩種基于
    的頭像 發(fā)表于 09-10 15:19 ?1520次閱讀

    第二代SiC碳化硅MOSFET關(guān)斷損耗Eoff

    第二代SiC碳化硅MOSFET關(guān)斷損耗Eoff
    的頭像 發(fā)表于 06-20 09:53 ?484次閱讀
    第二代<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>關(guān)斷損耗Eoff

    碳化硅(SiC)功率器件的開(kāi)關(guān)性能比較

    過(guò)去十年,碳化硅(SiC)功率器件因其在功率轉(zhuǎn)換器中的高功率密度和高效率而備受關(guān)注。制造商們已經(jīng)開(kāi)始采用碳化硅技術(shù)來(lái)開(kāi)發(fā)基于各種半導(dǎo)體器件的功率模塊,如雙極結(jié)晶體管(BJT)、結(jié)型場(chǎng)效
    的頭像 發(fā)表于 05-30 11:23 ?720次閱讀
    <b class='flag-5'>碳化硅</b>(<b class='flag-5'>SiC</b>)功率器件的開(kāi)關(guān)性能比較

    Nexperia發(fā)布新款1200V碳化硅MOSFET

    Nexperia(安世半導(dǎo)體)近日宣布,公司推出了業(yè)界領(lǐng)先的1200V碳化硅SiCMOSFET,標(biāo)志著其在高功率半導(dǎo)體領(lǐng)域的又一重要突破。
    的頭像 發(fā)表于 05-23 11:34 ?921次閱讀

    碳化硅模塊(SiC模塊/MODULE)大電流下的驅(qū)動(dòng)器研究

    由于碳化硅SiCMOSFET具有高頻、低損耗、高耐溫特性,在提升新能源汽車逆變器效率和功率密度方面具有巨大優(yōu)勢(shì)。對(duì)于SiC MOSFET
    發(fā)表于 05-14 09:57

    SIC 碳化硅認(rèn)識(shí)

    1:什么是碳化硅 碳化硅SiC)又叫金剛砂,它是用石英砂、石油焦、木屑、食鹽等原料通過(guò)電阻爐高溫冶煉而成,其實(shí)碳化硅很久以前就被發(fā)現(xiàn)了,它的特點(diǎn)是:化學(xué)性能穩(wěn)定、導(dǎo)熱系數(shù)高、熱膨脹系
    的頭像 發(fā)表于 04-01 10:09 ?1009次閱讀
    <b class='flag-5'>SIC</b> <b class='flag-5'>碳化硅</b>認(rèn)識(shí)

    碳化硅芯片設(shè)計(jì):創(chuàng)新引領(lǐng)電子技術(shù)的未來(lái)

    隨著現(xiàn)代電子技術(shù)的飛速發(fā)展,碳化硅SiC)作為一種新型的半導(dǎo)體材料,以其優(yōu)異的物理和化學(xué)性能,在功率電子器件領(lǐng)域展現(xiàn)出巨大的應(yīng)用潛力。碳化硅芯片的設(shè)計(jì)和
    的頭像 發(fā)表于 03-27 09:23 ?1152次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>芯片</b>設(shè)計(jì):創(chuàng)新引領(lǐng)電子技術(shù)的未來(lái)

    碳化硅壓敏電阻 - 氧化鋅 MOV

    和發(fā)電機(jī)繞組以及磁線圈中的高關(guān)斷電壓。 棒材和管材EAK碳化硅壓敏電阻 這些EAK非線性電阻壓敏電阻由碳化硅制成,具有高功率耗散和高能量吸收。該系列采用棒材和管材制造,外徑范圍為 6 至 30
    發(fā)表于 03-08 08:37

    一文了解SiC碳化硅MOSFET的應(yīng)用及性能優(yōu)勢(shì)

    共讀好書(shū) 碳化硅是第三代半導(dǎo)體產(chǎn)業(yè)發(fā)展的重要基礎(chǔ)材料,碳化硅功率器件以其優(yōu)異的耐高壓、耐高溫、低損耗等性能,能夠有效滿足電力電子系統(tǒng)的高效率、小型化和輕量化要求。 碳化硅MOSFET
    的頭像 發(fā)表于 02-21 18:24 ?1387次閱讀
    一文了解<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>的應(yīng)用及性能優(yōu)勢(shì)

    SiC碳化硅MOSFET的應(yīng)用及性能優(yōu)勢(shì)

    碳化硅是第三代半導(dǎo)體產(chǎn)業(yè)發(fā)展的重要基礎(chǔ)材料,碳化硅功率器件以其優(yōu)異的耐高壓、耐高溫、低損耗等性能,能夠有效滿足電力電子系統(tǒng)的高效率、小型化和輕量化要求。
    的頭像 發(fā)表于 01-20 17:18 ?1073次閱讀
    <b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>的應(yīng)用及性能優(yōu)勢(shì)
    RM新时代网站-首页