什么是第三代半導(dǎo)體?
第三代半導(dǎo)體是以碳化硅SiC、氮化鎵GaN為主的寬禁帶半導(dǎo)體材料,具有高擊穿電場、高飽和電子速度、高熱導(dǎo)率、高電子密度、高遷移率、可承受大功率等特點(diǎn)。
一、二、三代半導(dǎo)體什么區(qū)別?
一、材料
第一代半導(dǎo)體材料,發(fā)明并實用于20世紀(jì)50年代,以硅(Si)、鍺(Ge)為代表,特別是硅,構(gòu)成了一切邏輯器件的基礎(chǔ)。我們的CPU、GPU的算力,都離不開硅的功勞。第二代半導(dǎo)體材料,發(fā)明并實用于20世紀(jì)80年代,主要是指化合物半導(dǎo)體材料,以砷化鎵(GaAs)、磷化銦(InP)為代表。其中砷化鎵在射頻功放器件中扮演重要角色,磷化銦在光通信器件中應(yīng)用廣泛……而第三代半導(dǎo)體,發(fā)明并實用于本世紀(jì)初年,涌現(xiàn)出了碳化硅(SiC)、氮化鎵(GaN)、氧化鋅(ZnO)、金剛石(C)、氮化鋁(AlN)等具有寬禁帶(Eg>2.3eV)特性的新興半導(dǎo)體材料,因此也被成為寬禁帶半導(dǎo)體材料。
二、帶隙
第一代半導(dǎo)體材料,屬于間接帶隙,窄帶隙;第二代半導(dǎo)體材料,直接帶隙,窄帶隙;第三代半導(dǎo)體材料,寬禁帶,全組分直接帶隙。和傳統(tǒng)半導(dǎo)體材料相比,更寬的禁帶寬度允許材料在更高的溫度、更強(qiáng)的電壓與更快的開關(guān)頻率下運(yùn)行。
三、應(yīng)用
第一代半導(dǎo)體材料主要用于分立器件和芯片制造;第二代半導(dǎo)體材料主要用于制作高速、高頻、大功率以及發(fā)光電子器件,也是制作高性能微波、毫米波器件的優(yōu)良材料,廣泛應(yīng)用在微波通信、光通信、衛(wèi)星通信、光電器件、激光器和衛(wèi)星導(dǎo)航等領(lǐng)域。第三代半導(dǎo)體材料廣泛用于制作高溫、高頻、大功率和抗輻射電子器件,應(yīng)用于半導(dǎo)體照明、5G通信、衛(wèi)星通信、光通信、電力電子、航空航天等領(lǐng)域。第三代半導(dǎo)體材料已被認(rèn)為是當(dāng)今電子產(chǎn)業(yè)發(fā)展的新動力。以第三代半導(dǎo)體的典型代表碳化硅(SiC)為例,碳化硅具有高臨界磁場、高電子飽和速度與極高熱導(dǎo)率等特點(diǎn),使得其器件適用于高頻高溫的應(yīng)用場景,相較于硅器件,碳化硅器件可以顯著降低開關(guān)損耗。
因此,碳化硅可以制造高耐壓、大功率的電力電子器件如MOSFET、IGBT、SBD等,用于智能電網(wǎng)、新能源汽車等行業(yè)。與硅元器件相比,氮化鎵具有高臨界磁場、高電子飽和速度與極高的電子遷移率的特點(diǎn),是超高頻器件的極佳選擇,適用于5G通信、微波射頻等領(lǐng)域的應(yīng)用。第三代半導(dǎo)體材料具有抗高溫、高功率、高壓、高頻以及高輻射等特性,相比第一代硅基半導(dǎo)體可以降低50%以上的能量損失,同時使裝備體積減小75%以上。第三代半導(dǎo)體屬于后摩爾定律概念,制程和設(shè)備要求相對不高,難點(diǎn)在于第三代半導(dǎo)體材料的制備,同時在設(shè)計上要有優(yōu)勢。
第三代半導(dǎo)體現(xiàn)狀
由于制造設(shè)備、制造工藝以及成本的劣勢,多年來第三代半導(dǎo)體材料只是在小范圍內(nèi)應(yīng)用,無法挑戰(zhàn)硅基半導(dǎo)體的統(tǒng)治地位。目前碳化硅襯底技術(shù)相對簡單,國內(nèi)已實現(xiàn)4英寸量產(chǎn),6英寸的研發(fā)也已經(jīng)完成。氮化鎵(GaN)制備技術(shù)仍有待提升,國內(nèi)企業(yè)目前可以小批量生產(chǎn)2英寸襯底,具備了4英寸襯底生產(chǎn)能力,并開發(fā)出6英寸樣品。
第三代半導(dǎo)體的機(jī)遇
在5G和新能源汽車等新市場需求的驅(qū)動下,第三代半導(dǎo)體材料有望迎來加速發(fā)展。硅基半導(dǎo)體的性能已無法完全滿足5G和新能源汽車的需求,碳化硅和氮化鎵等第三代半導(dǎo)體的優(yōu)勢被放大。另外,制備技術(shù)的進(jìn)步使得碳化硅和氮化鎵器件成本不斷下降,碳化硅和氮化鎵的性價比優(yōu)勢將充分顯現(xiàn)。初步判斷,第三代半導(dǎo)體未來的核心增長點(diǎn)將集中在碳化硅和氮化鎵各自占優(yōu)勢的領(lǐng)域。
一、碳化硅(SiC)
常被用于功率器件,適用于600V下的高壓場景,廣泛應(yīng)用于新能源汽車、充電樁、軌道交通、光伏、風(fēng)電等電力電子領(lǐng)域。新能源汽車以及軌道交通兩個領(lǐng)域復(fù)合增速較快,有望成為碳化硅市場快速增長的主要驅(qū)動力。
計到2023年,碳化硅功率器件的市場規(guī)模將超過15億美元,年復(fù)合增長率為31%。
1.新能源汽車
在新能源汽車領(lǐng)域,碳化硅器件主要可以應(yīng)用于功率控制單元、逆變器、車載充電器等方面。碳化硅功率器件輕量化、高效率、耐高溫的特性有助于有效降低新能源汽車的成本。2018年特斯拉Model 3采用了意法半導(dǎo)體生產(chǎn)的碳化硅逆變器,是第一家在主逆變器中集成全碳化硅功率模塊的車企。以Model 3搭載的碳化硅功率器件為例,其輕量化的特性節(jié)省了電動汽車內(nèi)部空間,高效率的特性有效降低了電動汽車電池成本,耐高溫的特性降低了對冷卻系統(tǒng)的要求,節(jié)約了冷卻成本。此外,近期新上市的比亞迪漢EV也搭載了比亞迪自主研發(fā)并制造的高性能SiC-MOSFET 控制模塊。
2.軌道交通
在軌道交通領(lǐng)域,碳化硅器件主要應(yīng)用于軌交牽引變流器,能大幅提升牽引變流裝置的效率,符合軌道交通綠色化、小型化、輕量化的發(fā)展趨勢。近日完成調(diào)試的蘇州3號線0312號列車是國內(nèi)首個基于碳化硅變流技術(shù)的牽引系統(tǒng)項目。采用完全的碳化硅半導(dǎo)體技術(shù)替代傳統(tǒng)IGBT技術(shù),在提高系統(tǒng)效率的同時降低了噪聲,提升了乘客的舒適度。
二、氮化鎵(GaN)
側(cè)重高頻性能,廣泛應(yīng)用于基站、雷達(dá)、工業(yè)、消費(fèi)電子領(lǐng)域:1.5G基站氮化鎵射頻器件更能有效滿足5G高功率、高通信頻段的要求。5G基站以及快充兩個領(lǐng)域復(fù)合增速較快,有望成為氮化鎵市場快速增長的主要驅(qū)動力?;诘壒に嚨幕菊急葘⒂?0%增至58%,帶來大量氮化鎵的新增需求。預(yù)計到2022年,氮化鎵器件的市場規(guī)模將超過25億美元,年復(fù)合增長率為17%。
2.快充
氮化鎵具備導(dǎo)通電阻小、損耗低以及能源轉(zhuǎn)換效率高等優(yōu)點(diǎn),由氮化鎵制成的充電器還可以做到較小的體積。安卓端率先將氮化鎵技術(shù)導(dǎo)入到快充領(lǐng)域,隨著氮化鎵生產(chǎn)成本迅速下降,氮化鎵快充有望成為消費(fèi)電子領(lǐng)域下一個殺手級應(yīng)用。預(yù)計全球氮化鎵功率半導(dǎo)體市場規(guī)模從2018年的873萬美元增長到2024年的3.5億美元,復(fù)合增長率達(dá)到85%。2019年9月,OPPO發(fā)布國內(nèi)首款氮化鎵充電器SuperVOOC 2.0,充電功率為65W;2020年2月,小米推出65W 氮化鎵充電器,體積比小米筆記本充電器縮小48%,并且售價創(chuàng)下業(yè)內(nèi)新低。隨著氮化鎵技術(shù)逐步提升,規(guī)模效應(yīng)會帶動成本越來越低,未來氮化鎵充電器的滲透率會不斷提升。中國三代半導(dǎo)體材料中和全球的差距一、中國以硅為代表的第一代半導(dǎo)體材料和國際一線水平差距最大1.生產(chǎn)設(shè)備幾乎所有的晶圓代工廠都會用到美國公司的設(shè)備,2019年全球前5名芯片設(shè)備生產(chǎn)商3家來自美國;而中國的北方華創(chuàng)、中微半導(dǎo)體、上海微電子等中國優(yōu)秀的芯片公司只是在刻蝕設(shè)備、清洗設(shè)備、***等部分細(xì)分領(lǐng)域?qū)崿F(xiàn)突破,設(shè)備領(lǐng)域的國產(chǎn)化率還不到20%。
2.應(yīng)用材料
美國已連續(xù)多年位列第一,我國的高端光刻膠幾乎依賴進(jìn)口,全球5大硅晶圓的供應(yīng)商占據(jù)了高達(dá)92.8%的產(chǎn)能,美國、日本、韓國的公司具有壟斷地位。
3.生產(chǎn)代工
2019年臺積電市場占有率高達(dá)52%,韓國三星占了18%左右,中國最優(yōu)秀的芯片制造公司中芯國際只占5%,且在制程上前面兩個相差30年的差距。
二、中國以砷化鎵為代表的第二代半導(dǎo)體材料已經(jīng)有突破的跡象
1.砷化鎵晶圓環(huán)節(jié)
據(jù)Strategy Analytics數(shù)據(jù),2018年前四大砷化鎵外延片廠商為IQE(英國)、全新光電(VPEC,臺灣)、住友化學(xué)(Sumitomo Chemicals,日本)、英特磊(IntelliEPI,臺灣),市場占有率分別為54%、25%、13%、6%。CR4高達(dá)98%。
2.砷化鎵晶圓制造環(huán)節(jié)(Foundry+IDM)
臺灣系代工廠為主流,穩(wěn)懋(臺灣)一家獨(dú)大,占據(jù)了砷化鎵晶圓代工市場71%的市場份額,其次為宏捷(臺灣)與環(huán)宇(GCS,美國),分別為9%和8%。
3.砷化鎵元器件
砷化鎵元器件產(chǎn)品(PA為主),也是以歐美廠商為主,最大的是Skyworks(思佳訊),市場占有率為30.7%;其次為Qorvo(科沃,RFMD和TriQuint合并而成),市場份額為28%;第三名為Avago(安華高,博通收購)。
這三家都是美國企業(yè)??梢?,在砷化鎵三大產(chǎn)業(yè)鏈環(huán)節(jié)(晶圓、晶圓制造代工、核心元器件),目前都以歐美、日本和臺灣廠商為主導(dǎo)。中國企業(yè)起步晚,在產(chǎn)業(yè)鏈中話語權(quán)不強(qiáng)。不過從三個環(huán)節(jié)來看,已經(jīng)有突破的跡象。如華為就是將手機(jī)射頻關(guān)鍵部件PA通過自己研發(fā)然后轉(zhuǎn)單給三安光電代工的。
三、中國在以氮化鎵和碳化硅為代表第三代半導(dǎo)體材料方面有追趕和超車的機(jī)會由于第三代半導(dǎo)體材料及應(yīng)用產(chǎn)業(yè)發(fā)明并實用于本世紀(jì)初年,各國的研究和水平相差不遠(yuǎn),國內(nèi)產(chǎn)業(yè)界和專家認(rèn)為第三代半導(dǎo)體材料成了我們擺脫集成電路(芯片)被動局面、實現(xiàn)芯片技術(shù)追趕和超車的良機(jī)。
就像汽車產(chǎn)業(yè),中國就是利用發(fā)展新能源汽車的模式來拉近和美、歐、日系等汽車強(qiáng)國的距離的,并且在某些領(lǐng)域?qū)崿F(xiàn)了彎道超車、換道超車的局面。三代半材料性能優(yōu)異、未來應(yīng)用廣泛,如果從這方面趕超是存在機(jī)會的。中國三代半導(dǎo)體材料相關(guān)公司:
什么是芯片?
通俗點(diǎn)來說,芯片就是把一個電路所需的晶體管和其他器件制作在一塊半導(dǎo)體上。通常情況下半導(dǎo)體所應(yīng)用到的材料就是單晶硅(Monocrystalline Silicon),如果要制造用于處理元宇宙數(shù)據(jù)的高性能芯片,那么單晶硅的純度需要達(dá)到99.99999999999%以上。如圖所示,芯片最初的材料便是這一塊一塊的單晶硅硅錠了。
生產(chǎn)芯片的原料——單晶硅硅錠
我們不可能在這么大的硅錠上制作芯片,于是晶圓廠將硅錠按照要求裁切成一個一個的圓片,圖中那個大大的圓片便是我們說的晶圓(Wafer),而放大的部分里面包含著復(fù)雜的線路圖,這些獨(dú)立的結(jié)構(gòu)單元稱為chips,在某些場合下,芯片也指代chips。
晶圓以及圓上的chips
芯片的制造工藝
在半導(dǎo)體界有這么一種說法,“如果將制造核彈的難度設(shè)定為1,那么制造芯片的難度可能是100,制造高性能芯片的難度可能是10000。”
芯片制造流程
是不是已經(jīng)被嚇到了?注意,這還是一張簡圖,實際上芯片制造分為前道工藝和后道工藝,每一段工藝又分為幾十甚至上百道工序,中間只要一個環(huán)節(jié)走不通,那都是半途而廢。最后,為了讓大家能看得清楚一些,筆者將上述的圖再簡化如下所示:
芯片制造簡圖
通過上述的圖片,我們已經(jīng)初步了解了制造一枚芯片的流程,芯片制造的困難不僅僅包括設(shè)備,同時也包括材料方面的問題。接下來,筆者分別介紹芯片制造中所用到的重要材料。
單晶硅,制備芯片結(jié)構(gòu)的襯底
沒有高純度的單晶硅,就不要提芯片,更不用說構(gòu)建一個元宇宙的虛擬世界了。作為地球上第二豐度的元素,硅廣泛地存在于自然界當(dāng)中。它成本低廉,溫度穩(wěn)定性好,穿透電流低,如此優(yōu)異的性能使它代替鍺,成為了半導(dǎo)體的主流材料。
單質(zhì)硅主要有單晶、多晶以及非晶硅三類形態(tài),后兩種形態(tài)缺陷太多,若用于芯片制造,在加工過程中會引起基材的電學(xué)以及力學(xué)性能變差,因此只能用高純的單晶硅作為芯片的基元材料。
硅單質(zhì)的三種形態(tài)
然而自然界中別說單晶硅,就連硅單質(zhì)也是不存在的,硅元素主要以硅酸鹽以及硅的氧化物形式存在,想從原料中獲取單晶硅并不是一個簡單的過程,要經(jīng)過西門子法提純以及CZ法制備單晶硅兩大步驟,這兩大步驟具體包括:二氧化硅原料→金屬硅→HCl提純→氫氣還原→多晶硅→熔融→拉制單晶硅→切片。
首先,利用焦炭,在1500℃的條件下,將二氧化硅原料還原成金屬硅,此時的金屬硅純度僅僅為97%,具有雜質(zhì);隨后,利用氯化氫(HCl)在300℃的低溫下將金屬硅變?yōu)?span style="color:rgb(230,46,46);">三氯硅烷,而氯化氫也會將金屬硅中的雜質(zhì)溶解,由于雜質(zhì)和三氯硅烷蒸汽壓較大的差異,此時,雜質(zhì)的氯化物會受熱蒸發(fā),硅的純度得到進(jìn)一步提高。
接下來,利用高純度氫氣將高純度的三氯硅烷通入爐中,在1100℃的高溫下,爐子內(nèi)部的硅芯棒上會逐漸長出多晶硅晶體,此時多晶硅的純度可達(dá)99.999999999%。
西門子法制備高純多晶硅
最后一步便是利用多晶硅制備單晶硅,首先將多晶硅加熱熔化,隨后加入單晶硅的籽晶(Seed),觸碰多晶硅的熔體,此時界面處的硅便會沿著同一個晶面方向生長,通過調(diào)控合適的工藝參數(shù),便可得到硅單晶棒。
CZ法制備單晶硅流程
單晶硅硅棒經(jīng)過打磨,拋光,外延,切片等工藝,就形成晶圓了。別急,這只是做芯片的第一步。
光刻膠,轉(zhuǎn)印芯片電路的媒介
當(dāng)制備好的晶圓經(jīng)過氧化處理后,便進(jìn)入了芯片前道工藝的光刻工序,大家應(yīng)該都知道***,如果將***比作芯片行業(yè)的引擎,那么光刻膠就是助推引擎的燃料。
光刻流程簡圖
光刻膠就是圖中橙色的部分,也有人將其稱為光阻劑。光刻膠分為正膠和負(fù)膠,正膠經(jīng)過曝光后會溶解于顯影液,負(fù)膠則是相反的。按照曝光光源的波長分類,光刻膠分為g線,i線,KrF,ArF以及EUV光刻膠,由左到右,光刻膠對應(yīng)的曝光波長逐漸變短,先進(jìn)的EUV光刻膠對應(yīng)曝光波長只有13.5nm,可用于10nm以下的芯片制程,但目前EUV***只有荷蘭ASML能制造。
光刻膠分類
光刻膠的組分一直是國外廠商的機(jī)密,很難通過逆向解析的手段還原。一般而言,光刻膠的組分包括光引發(fā)劑,樹脂基體,單體以及助劑。當(dāng)光刻膠經(jīng)過紫外光照射后,發(fā)生一系列的物理化學(xué)變化,電路圖形就從掩膜版上轉(zhuǎn)移到光刻膠上面,經(jīng)過刻蝕后,晶圓片上就形成了對應(yīng)的圖案。
光刻膠反應(yīng)機(jī)理簡圖
我國目前28nm工藝制程使用的光刻膠為KrF型號,目前正在積極開發(fā)ArF型光刻膠,而更為高端的產(chǎn)品已經(jīng)被美國與日本所壟斷。
成膜,分隔芯片結(jié)構(gòu)的骨架
經(jīng)過刻蝕,我們已經(jīng)得到了芯片的基本平面形貌,為了防止各個器件之間的干擾,同時賦予芯片三維結(jié)構(gòu),我們就需要薄膜(<1μm)沉積工藝。
芯片薄膜沉積工藝
薄膜沉積工藝分為化學(xué)氣相沉積(CVD)以及物理氣相沉積(PVD)兩種方式。
典型的CVD工藝是將晶圓(基底)暴露在一種或多種不同的前驅(qū)物下,在基底表面發(fā)生化學(xué)反應(yīng)或化學(xué)分解來產(chǎn)生所需的沉積薄膜。CVD 的基本流程如圖所示:
CVD基本流程
上述的流程包括反應(yīng)物傳輸,先驅(qū)體反應(yīng),氣體擴(kuò)散,襯底吸附,CVD主要用在芯片的氮化層成膜。而PVD的方式包括蒸鍍與濺射,主要用于芯片的金屬層,目前多用離子濺射的方式成膜。離子濺射的基本原理是通過氣體等離子轟擊靶材,將靶材原子“打”出來,并使它沉積在襯底上成膜。
PVD基本流程
封裝,連接芯片電路的外衣
封裝屬于后道工藝,但也是至關(guān)重要的一步。芯片封裝是半導(dǎo)體開發(fā)的最后一個階段,不僅僅是為了保護(hù)芯片的內(nèi)部結(jié)構(gòu)和提高芯片的性能,更是為芯片內(nèi)部結(jié)構(gòu)與外部電路建立了一道溝通的橋梁。
2.5D芯片封裝工藝
芯片的封裝材料主要包括封裝基板、引線框架、鍵合絲、塑封料等四類材料。這四類材料的市場份額在芯片封裝材料里占70%以上。
封裝材料市場占有率
封裝基板是芯片的內(nèi)外承載和保護(hù)結(jié)構(gòu)。對于高端芯片,會選擇環(huán)氧樹脂,聚苯醚樹脂,聚酰亞胺樹脂作為基板材料,相比于金屬基板和陶瓷基板,有機(jī)基板具有密度小,生產(chǎn)成本低以及加工簡單的優(yōu)勢。而引線框架則是連接內(nèi)外電路的媒介,它需要較高的導(dǎo)電導(dǎo)熱性能,一定的機(jī)械強(qiáng)度,良好的熱匹配性能,同時環(huán)境穩(wěn)定性要好。一般采用銅基引線框架材料。鍵合絲是芯片內(nèi)部與引線框架的內(nèi)引線,對于高端產(chǎn)品而言,要求化學(xué)穩(wěn)定性和導(dǎo)電率更高,因此高端芯片一般采用鍵合金絲作為鍵合材料,但是缺點(diǎn)是成本過高,因此在一些較為低端的產(chǎn)品,一般用鍵合銀絲以及鍵合銅絲。塑封料則是對芯片和引線架構(gòu)起保護(hù)作用。塑封料有金屬,陶瓷,高分子塑封料三種方式。相比于前兩者,高分子環(huán)氧塑封具有低成本,小體積,低密度等優(yōu)點(diǎn),目前絕大多數(shù)的集成電路都采用高分子環(huán)氧塑封。
封裝材料示意圖
展望
在經(jīng)過封裝測試之后的其它工藝,一枚小小的芯片就這么誕生了。強(qiáng)大的算力是支持元宇宙運(yùn)行的基礎(chǔ),根據(jù)半導(dǎo)體的摩爾定律:
集成電路上可以容納的晶體管數(shù)目在大約每經(jīng)過18個月到24個月便會增加一倍。換言之,處理器的性能大約每兩年翻一倍,同時價格下降為之前的一半。
但是隨著芯片制成的不斷縮小,甚至到現(xiàn)在網(wǎng)傳的1.4nm,摩爾定律的適用性在面臨挑戰(zhàn)。那么,我們不禁要問,能否在原材料上有所突破呢?答案是肯定的,科學(xué)家們曾經(jīng)說石墨烯是下一代芯片材料,但是石墨烯的量產(chǎn)與提純又是一大問題。近期,科學(xué)家們發(fā)現(xiàn)二維二硫化鉬這種新型半導(dǎo)體:
二硫化鉬結(jié)構(gòu)圖
相比于單晶硅,它具有的優(yōu)勢:
- 沒有單晶硅表面的“懸掛鍵”,性能比單晶硅更穩(wěn)定;
- 很薄,單層的二硫化鉬只有6.5埃的厚度,比現(xiàn)在的3nm制程小了5倍,芯片的制程可以進(jìn)一步縮小,獲得更高的算力;
- 若能批產(chǎn),可以減少芯片的制作流程。
但是,需要說明的是,作為一種二維材料,它與石墨烯一樣很難穩(wěn)定批產(chǎn),這就需要材料學(xué)家進(jìn)一步去探索新的制備工藝和新的合成方法了,希望那一天能夠早日到來。
-
半導(dǎo)體
+關(guān)注
關(guān)注
334文章
27286瀏覽量
218062 -
材料
+關(guān)注
關(guān)注
3文章
1220瀏覽量
27270
發(fā)布評論請先 登錄
相關(guān)推薦
評論