RM新时代网站-首页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

標簽 > EUV

EUV

+關注 0人關注

EUV光刻技術 - 即將在芯片上繪制微小特征的下一代技術 – 原來是預計在2012年左右投產(chǎn)。但是幾年過去了,EUV已經(jīng)遇到了一些延遲,將技術從一個節(jié)點推向下一個階段,本單元詳細介紹了EUV光刻機,EUV光刻機技術的技術應用,EUV光刻機的技術、市場問題,國產(chǎn)euv光刻機發(fā)展等內(nèi)容。

文章: 591
視頻: 6
瀏覽: 86004
帖子: 0

EUV簡介

  光刻機(Mask Aligner) 又名:掩模對準曝光機,曝光系統(tǒng),光刻系統(tǒng)等。常用的光刻機是掩膜對準光刻,所以叫 Mask Alignment System.

  一般的光刻工藝要經(jīng)歷硅片表面清洗烘干、涂底、旋涂光刻膠、軟烘、對準曝光、后烘、顯影、硬烘、刻蝕等工序。

  Photolithography(光刻) 意思是用光來制作一個圖形(工藝);

  在硅片表面勻膠,然后將掩模版上的圖形轉(zhuǎn)移光刻膠上的過程將器件或電路結構臨時“復制”到硅片上的過程。

EUV百科

  光刻機(Mask Aligner) 又名:掩模對準曝光機,曝光系統(tǒng),光刻系統(tǒng)等。常用的光刻機是掩膜對準光刻,所以叫 Mask Alignment System.

  一般的光刻工藝要經(jīng)歷硅片表面清洗烘干、涂底、旋涂光刻膠、軟烘、對準曝光、后烘、顯影、硬烘、刻蝕等工序。

  Photolithography(光刻) 意思是用光來制作一個圖形(工藝);

  在硅片表面勻膠,然后將掩模版上的圖形轉(zhuǎn)移光刻膠上的過程將器件或電路結構臨時“復制”到硅片上的過程。

  性能指標

  光刻機的主要性能指標有:支持基片的尺寸范圍,分辨率、對準精度、曝光方式、光源波長、光強均勻性、生產(chǎn)效率等。

  分辨率是對光刻工藝加工可以達到的最細線條精度的一種描述方式。光刻的分辨率受受光源衍射的限制,所以與光源、光刻系統(tǒng)、光刻膠和工藝等各方面的限制。

  對準精度是在多層曝光時層間圖案的定位精度。

  曝光方式分為接觸接近式、投影式和直寫式。

  曝光光源波長分為紫外、深紫外和極紫外區(qū)域,光源有汞燈,準分子激光器等。

  EUV光刻技術面臨的三大技術問題

  新的光刻工具將在5nm需要,但薄膜,阻抗和正常運行時間仍然存在問題。

  Momentum正在應用于極紫外(EUV)光刻技術,但這個談及很久的技術可以用于批量生產(chǎn)之前,仍然有一些主要的挑戰(zhàn)要解決。

  EUV光刻技術 - 即將在芯片上繪制微小特征的下一代技術 – 原來是預計在2012年左右投產(chǎn)。但是幾年過去了,EUV已經(jīng)遇到了一些延遲,將技術從一個節(jié)點推向下一個階段。

  如今,GlobalFoundries,英特爾,三星和臺積電相互競爭,將EUV光刻插入到7nm和/或5nm的大容量制造(HVM),從2018年到2020年的時間范圍,這取決于供應商。此外,美光,三星和SK海力士希望1xnm DRAM使用EUV。

  但和以前一樣,在EUV進入到HVM之前,有些pieces必須聚合在一起。而芯片制造商還必須權衡復雜的分類。

  根據(jù)行業(yè)的最新數(shù)據(jù),以下是當前EUV狀況的快照,以及其中的一些權衡:

  • ASML正在其期待已久的250瓦特電源安裝其首款具有生產(chǎn)價值的EUV掃描儀,這將在年底完成。然而,EUV的正常運行時間仍然是一個問題。

  • 阻抗,暴露于光線時在表面形成圖案的材料,今天正在努力達到EUV的目標規(guī)格。該規(guī)格可以減少,但吞吐量受到打擊。有時,與抗蝕劑的相互作用可能會導致過程的變化甚至模式故障。

  • EUV薄膜,面膜基礎設施的重要組成部分,還沒有準備好用于HVM。薄膜是防止顆粒落在面罩上的薄膜。因此,芯片制造商可能要么等待EUV防護薄膜,要么沒有它們就要投入生產(chǎn),至少在初期。

  盡管如此,即使沒有這些部分,芯片制造商也可以在7nm處插入EUV光刻技術。使用強力方法,可以為一層或多層插入EUV。然而,在5nm及以后,EUV還沒有準備好在這些節(jié)點上滿足更嚴格的規(guī)范,這意味著行業(yè)必須花更多的時間和金錢來解決這些問題。

  Stifel Nicolaus的分析師何志謙表示:“我們正在越來越多的采用EUV進行批量生產(chǎn)。有些事情需要解決,客戶的EUV可以使用多少層次。英特爾更保守。三星更看好,因為他們想把它融入DRAM和代工/邏輯。我相信在臺積電5nm節(jié)點上將會實現(xiàn)全面的HVM實現(xiàn),這可能意味著2020-2021。

  顯然,代工客戶需要保持領先于EUV的曲線。為了幫助行業(yè)獲得一些洞察力,Semiconductor Engineering已經(jīng)看到了EUV掃描儀/源頭、阻抗和光罩掩膜基礎設施三個主要部分的技術。

  為什么選擇EUV? 今天,芯片制造商使用193nm波長光刻技術來對晶片上的精細特征進行圖案化。實際上,193nm浸沒式光刻在80nm間距(40nm半間距)下達到極限。

  因此,從22nm / 20nm開始,芯片制造商開始使用193nm浸沒光刻以及各種多種圖案化技術。為了減小超過40nm的間距,多個圖案化涉及在晶圓廠中使用幾個光刻,蝕刻和沉積步驟的過程。

  006EDNC20170930
圖1:自對準間隔避免掩模未對準。來源:Lam Research

  007EDNC20170930
圖2:雙圖案化增加密度。來源Lam Research

  多個圖案化工作,但它增加了更多的步驟,從而增加流程中的成本和周期時間。循環(huán)時間是從開始到結束處理晶圓的晶片所花費的時間。

  為了解決這些問題,芯片制造商想要EUV。但是由于EUV尚未準備好在7nm的初始階段,芯片制造商將首先使用浸入/多圖案化。希望是在7nm以后插入EUV。 EUV是5nm必須的。

  D2S首席執(zhí)行官藤本真雄(Aki Fujimura)表示:“從成本的角度來看,7nm將實用化,盡管可能并不理想。 “(業(yè)內(nèi)人士)希望隨著7nm的音量增加,EUV將采用相同的設計規(guī)則。 5nm從實際的角度來看真的是沒有EUV的。“

  最初,EUV針對7nm的觸點和通孔。根據(jù)GlobalFoundries的說法,為了處理接觸/通孔,它需要每層兩到四個掩模用于7nm的光刻。

  然而,使用EUV,每層只需要一個掩模來處理7nm和5nm的接觸/通孔。根據(jù)ASML,理論上,EUV簡化了流程,并將生產(chǎn)周期的周期縮短了約30天。

  “這是一個相當不錯的折衷,因為你的交易四圖案或一個面具接觸的三重圖案,”加里•帕頓,在首席技術官GlobalFoundries的。“這并不影響任何的設計規(guī)則要么,所以客戶可以得到循環(huán)時間和更好的收益率的優(yōu)勢。而且,因為它是準備好了,我們會由(EUV)以上的地方,我們會做金屬水平和縮小“。

  EUV的早期采用者希望在2019年至2020年期間將7nm技術插入其中。“這是中心。 GlobalFoundries的高級研究員和技術研究高級總監(jiān)Harry Levinson表示:“我們正更加努。四大芯片公司在未來幾年都處于HVM的軌道上。 現(xiàn)在真正的問題是誰將是第一,誰將是第二。

  問題的根源

  不過,在此之前,芯片制造商必須首先將EUV引入HVM。 這被證明比以前認為的更困難,因為EUV光刻的復雜性令人難以置信。

  008EDNC20170930
圖3:該EUV的復雜性。來源:ASML

  在EUV中,電源將等離子體轉(zhuǎn)換成13.5nm波長的光。 然后,光反彈了10個多層鏡子的復雜方案。 在這一點上,光通過可編程照明器并擊中面罩。 從那里,它會彈出六個多層鏡子,并以6%的角度擊中晶片。

  009EDNC20170930
圖4:準確彈跳光 來源:ASML /Carl Zeiss SMT Gmbh

  最大的挑戰(zhàn)是電源。它不會產(chǎn)生足夠的電源或EUV光,以使EUV掃描儀能夠足夠快,或使其經(jīng)濟可行。

  為了使EUV進入HVM,芯片制造商需要能產(chǎn)生250瓦功率的EUV掃描器。這轉(zhuǎn)化為每小時125瓦的吞吐量(wph)。

  實現(xiàn)這些目標所花費的時間比預期的要多。不久前,源產(chǎn)生的功率只有10瓦。然后,ASML的電源從80瓦特移動到125瓦特,將EUV的吞吐量從60瓦特提高到85瓦特。

  今天,ASML正在準備首款生產(chǎn)的EUV掃描儀NXE:3400B。該工具的數(shù)值孔徑為0.33,分辨率為13nm。 ASML高級產(chǎn)品經(jīng)理Roderik van Es表示:“如果您看系統(tǒng)的成像性能,我們(已完成)13nm LS和16nm IS。 (LS是指線和空間,而IS是隔離線。)

  最初,該工具將裝載一個140瓦的源,實現(xiàn)100瓦的吞吐量。最近,ASML已經(jīng)展示了一個250瓦的來源。根據(jù)Es的說法,這個250瓦特源的工業(yè)化版本將在年底前發(fā)布。

  即使是250瓦的光源,但是平板印刷師擔心系統(tǒng)的正常運行時間。 今天的193nm掃描儀可以不間斷地在制造廠以250W或更快的速度運行。 相比之下,預生產(chǎn)的EUV機器的上升時間卻在70%和80%左右。

  Stifel Nicolaus Ho表示:“可用性或工具在需要停機維護之前可以運行多長時間,仍然是一個令人擔憂的問題,特別是對于英特爾來說。 如果希望90年代高可用性指標的英特爾公司,則可用性水平不能達到70%甚至80%。”

  不過還有待觀察的是NXE:3400B在現(xiàn)場表現(xiàn)如何。 如果仍然存在正常運行時間問題,平板電腦正在研究為冗余目的購買額外的工具的想法。 那當然,這是一個昂貴的提議,芯片制造商寧愿避免。 分析師表示,每個EUV掃描儀售價約為1.25億美元,而今天的193nm浸沒式掃描儀則為7000萬美元。

  阻抗的問題

  多年來,EUV的首要挑戰(zhàn)是電源?,F(xiàn)在最大的挑戰(zhàn)是從源頭轉(zhuǎn)移到涉及抗蝕劑的過程。

  EUV可分為兩大類:化學放大抗蝕劑(CAR)和金屬氧化物。 CAR在業(yè)界使用多年,利用基于擴散的過程。較新的金屬氧化物抗蝕劑基于氧化錫化合物。

  所謂的抵抗力也涉及所謂的RLS三角分辨率(R),線邊粗糙度(LER)和靈敏度(S)之間的三個指標之間的折衷。

  為了達到所需的分辨率,芯片制造商希望以20mJ / cm 2的靈敏度或劑量進行EUV抗蝕。這些抗蝕劑是可用的,但它們比以前想象的更難加入HVM。

  “在32nm間距和以下,無論何種劑量,無論CAR還是金屬氧化物,無論如何,至少在理由范圍內(nèi)(《100mJ /cm²),”GlobalFoundries Levinson說。 然而,該行業(yè)已經(jīng)開發(fā)出在30mJ / cm 2和40mJ / cm 2工作的EUV抗蝕劑?;赗LS三角形的原理,較高劑量的抗蝕劑提供更好的分辨率。但是它們較慢并影響了EUV的吞吐量。

  采用30mJ / cm 2的劑量,根據(jù)ASML,具有250瓦特源的EUV掃描儀的吞吐量約為104-105Wph,不含防護薄膜,低于期望的125wph目標。

  Levinson說:“現(xiàn)有的EUV抗蝕劑能夠支持7nm HVM,但是隨著我們走向更小的CD,我們脫離了懸崖。” “下一個節(jié)點可能處于危險之中,因為耗時少的抗氧化劑時間過長。”

  這是關于在20mJ / cm 2下開發(fā)抗蝕劑的時間和金錢。該行業(yè)正在開發(fā)針對5nm的抗蝕劑。

  抗拒挑戰(zhàn)是艱巨的。 Lam Research的技術總監(jiān)Richard Wise在最近的一次活動中說:“劑量不一定是我們想要的。” “由于EUV的隨機效應,降低劑量有很多根本的身體挑戰(zhàn)。”

  隨機指標是隨機變化的另一種方式。光是由光子制成的。 Fractilia首席技術官Chris Mack解釋說,暴露少量抗蝕劑的光子數(shù)量與所需的曝光劑量相對應。 “但是這個平均值有隨機變化。如果曝光該抗蝕劑體積的光子數(shù)量較多,則相對隨機變化較小。但是,隨著曝光少量抗蝕劑的光子數(shù)量變小,該數(shù)量的相對變化就會變大。

  這種效應稱為光子散粒噪聲。散粒噪聲是光刻過程中光子數(shù)量的變化。

  所有類型的光刻受到隨機性的影響,但是對于EUV而言更糟。 “首先,EUV光子比193nm光子攜帶能量的14倍。所以對于相同的曝光劑量,有14倍的光子,“麥克說。 “其次,我們正在努力通過使用低曝光劑量來提高EUV掃描儀的吞吐量。這也意味著更少的光子。光子越少,光子或射擊噪聲就會有很大的隨機不確定性。“

  光子數(shù)量的變化是有問題的。 “我們有更高能量的光子,但還不夠。因此,我們有線寬粗糙度和線邊粗糙度(圖案),“TEL技術人員資深成員Ben Rathsack說。 (LER被定義為特征邊緣與理想形狀的偏差。)

  如果這還不夠,變化也可能導致其他問題。 Imec高級圖案部門主管Gregory McIntyre表示:“我們將在成像中成為挑戰(zhàn)第一的是極端粗糙度事件或納米橋接,斷線和合并或漏洞等場合的隨機故障。

  因此,在EUV曝光過程中,掃描儀有時無法解決線路,空間或聯(lián)系人。或者進程可能導致線路斷開或聯(lián)系人合并。

  薄膜問題

  除了阻抗,還有其他問題,即EUV光掩?;A設施。光掩模是給定IC設計的主模板。面膜開發(fā)之后,它被運到制造廠。將掩模放置在光刻工具中。該工具通過掩模投射光,這又掩模在晶片上的圖像。

  多年來,該行業(yè)一直在制造EUV面罩,盡管這個過程仍然具有挑戰(zhàn)性。 KLA-Tencor標線制品部總經(jīng)理Weston Sousa表示:“面罩行業(yè)正在加大EUV標線的開發(fā)力度。 “挑戰(zhàn)眾多,從空白質(zhì)量和CD均勻性到圖案缺陷和修復。”

  成本和收益也是問題。 “這是我擔心的面具,”GlobalFoundries的巴頓說。 “面罩本身存在缺陷,制造時面罩有缺陷。”

  來自最近eBeam倡議調(diào)查的數(shù)據(jù)顯示,總體面罩產(chǎn)量處于健康的94.8%,但EUV面罩產(chǎn)量下降了約64.3%。

  并且在每個節(jié)點處,掩模缺陷變得越來越小,難以找到。 “缺陷標準在早期循環(huán)中更為松動。隨著時間的推移,它將進入HVM級別。英特爾®嵌入式光罩單元Intel Mask操作系統(tǒng)的面罩技術總監(jiān)Jeff Farnsworth表示,HVM級別肯定不會松動。

  另外,三星的研究人員Heebom Kim表示,EUV掩模比復雜的光學掩模貴8倍。但是隨著EUV進入HVM,根據(jù)ASML的說法,EUV掩模的成本可能會下降到光學成本的三倍以上。

  光學和EUV掩模是不同的。在光學上,掩模坯料由玻璃基板上不透明的鉻層組成。

  相比之下,EUV掩模空白由襯底上的40至50個交替的硅和鉬層組成。在光學和EUV中,掩模毛坯被圖案化,形成光掩模。

  面具制造商希望實現(xiàn)兩個目標。首先是生產(chǎn)無缺陷的EUV面罩。然后,他們希望防止缺陷登陸面具。在這種情況下,來自掃描儀或其他過程的顆??赡軣o意中落在掩模上。

  如果在曝光階段在EUV掃描器的掩模上存在缺陷,則它們可以在晶片上印刷,從而影響芯片的產(chǎn)量。

  通常,面膜制造商正在制造無缺陷的面罩方面取得進展。防止顆粒著色在掩模上是不同的事情,并且涉及掩?;A設施中的關鍵部分 - 防護薄膜。防護薄膜組件作為面罩的防塵罩。

  010EDNC20170930
圖5:原型薄膜。來源:ASML

  不久前,業(yè)內(nèi)人士堅持認為,EUV掃描儀可以在沒有防護眼鏡的環(huán)境中處理干凈的環(huán)境。然后,芯片制造商改變了他們的立場,表示不會保證EUV掃描儀或其他工具在流程中保持100%的清潔。沒有防護薄膜制造商說,EUV面罩容易發(fā)生顆粒和缺陷。

  所以行業(yè)開始開發(fā)EUV防護薄膜。用于光學掩模的防護薄膜基于薄聚合物材料。相比之下,唯一的EUV防護薄膜供應商ASML開發(fā)出了僅50納米厚的多晶硅型EUV防護薄膜。

  在操作中,當EUV燈擊中防護薄膜時,膜的溫度將從600攝氏度升高到1000攝氏度。

  問題是防護薄片是脆的。在這些溫度下,有些人擔心EUV防護薄膜可能會在加工過程中惡化,造成EUV面罩和掃描儀的損壞。

  到目前為止,ASML的EUV防護薄膜已經(jīng)用140V的EUV電源進行了測試。但是,防護薄膜將如何反應250瓦特源仍然不清楚。

  應用材料面具和TSV蝕刻部門的技術人員和CTO主要負責人Wu Banqiu說:“對于機械強度和應用性能,EUV薄膜有一些挑戰(zhàn)。 “防護薄膜吸收一些EUV能量。這種能量會導致防護薄膜的溫度升高。防護薄膜也存在于真空中。這意味著自然對流冷卻非常低。天然的熱轉(zhuǎn)移非常困難,因為防護薄膜太薄了。“

  總而言之,關于在HVM中使用多晶硅薄膜,如果不懷疑,仍然存在一些不確定性。所以現(xiàn)在,行業(yè)正在改變調(diào)整和考慮兩個選擇 - 等待一個HVM防護薄片或沒有他們開始生產(chǎn)。

  英特爾表示,如果沒有防護眼鏡,它將不會進入EUV生產(chǎn)。英特爾的Farnsworth說:“我們正在積極地研究它。

  然而,該行業(yè)正在對沖它的投注。至少在初期,許多人也在考慮計劃進入EUV生產(chǎn)而沒有防護眼鏡。

  在理論上,使用EUV,芯片制造商可以處理沒有防護薄膜的接觸和通孔。 “對于那些人來說,不需要一個防護薄膜,因為關鍵區(qū)域較小。因此,造成問題的粒子的風險較小,“GlobalFoundries Patton說。

  但是有一些后果。即使EUV掃描儀是干凈的,不需要的顆粒也會粘在掩模上。

  因此,如果芯片制造商在沒有防護膜的情況下投入生產(chǎn),則必須在流程中實施更多的掩模檢查和清潔步驟。 “我們將做我們所做的與晶片印刷和晶圓檢查,”GlobalFoundries的萊文森說,“但是很痛苦。 所以,我們需要一個好的防護薄膜解決方案。“

  在研發(fā)方面,該行業(yè)正在研究下一代薄膜和面具基礎設施的其他部分。 可以肯定的是,對于EUV抗議的發(fā)展也有緊迫感。 而且,當然還有電源。

查看詳情

euv知識

展開查看更多

euv技術

光刻機的工作原理和分類

? 本文介紹了光刻機在芯片制造中的角色和地位,并介紹了光刻機的工作原理和分類。? ? ? ?? 光刻機:芯片制造的關鍵角色 ? ? 光刻機在芯片制造中占...

2024-11-24 標簽:芯片制造光刻機EUV 944 0

照亮半導體創(chuàng)新之路

照亮半導體創(chuàng)新之路

上海2024年9月5日?/美通社/ -- 全球半導體行業(yè)正處于爆炸性增長的軌道上,預計到2030年市場規(guī)模將達到驚人的1萬億美元(2023年超過5000...

2024-09-05 標簽:半導體激光器晶圓 1837 0

光刻機的基本原理和核心技術

光刻機的基本原理和核心技術

雖然DUVL機器可以通過多重曝光技術將線寬縮小到7-5納米,但如果要獲得更小的線寬,DUVL已經(jīng)達到了極限。采用EUV作為光源的極紫外光刻(EUVL)成...

2024-04-25 標簽:光源晶體管光刻機 3391 0

光刻機的發(fā)展歷程及工藝流程

光刻機的發(fā)展歷程及工藝流程

光刻機經(jīng)歷了5代產(chǎn)品發(fā)展,每次改進和創(chuàng)新都顯著提升了光刻機所能實現(xiàn)的最小工藝節(jié)點。按照使用光源依次從g-line、i-line發(fā)展到KrF、ArF和EU...

2024-03-21 標簽:芯片集成電路芯片制造 6212 0

一文讀懂芯片混合鍵合工藝流程

一文讀懂芯片混合鍵合工藝流程

在封裝史上,最后一次重大范式轉(zhuǎn)變是從引線鍵合到倒裝芯片。從那時起,更先進的封裝形式(例如晶圓級扇出和 TCB)一直是相同核心原理的漸進式改進。

2024-02-27 標簽:晶圓芯片設計蝕刻 3384 0

EUV反射鏡的鍍膜工藝:如何選擇合適的鍍膜機

EUV反射鏡的鍍膜工藝:如何選擇合適的鍍膜機

對基板移動進行仔細管理和將基板支架的機械公差降至最低,實現(xiàn)無與倫比的厚度均勻性濺射工藝的卓越穩(wěn)定性和極高水平的層厚度精度。

2024-02-21 標簽:光譜反射鏡鍍膜機 1088 0

高數(shù)值孔徑EUV光刻:引領下一代芯片制造的革命性技術

高數(shù)值孔徑EUV光刻:引領下一代芯片制造的革命性技術

摩爾定律是指在給定面積的硅片上,晶體管的數(shù)量大約每兩年翻一番,這種增益推動了計算技術的發(fā)展。在過去半個世紀里,我們將該定律視為一種類似進化或衰老的不可避...

2024-01-24 標簽:摩爾定律晶體管芯片制造 804 0

一文弄懂半導體掩膜版制造工藝及流程

一文弄懂半導體掩膜版制造工藝及流程

微電子制造過程中的圖形轉(zhuǎn)移母版掩膜版(Photomask)又稱光罩、光掩膜、光刻掩膜版等,是微電子制造過程中的圖形轉(zhuǎn)移工具或母版,是圖形設計和工藝技術等...

2024-01-06 標簽:集成電路液晶顯示器光刻機 3.3萬 0

光刻掩膜版保護膜常見的類型有哪些?

光刻掩膜版保護膜常見的類型有哪些?

掩膜版保護膜,mask pellicle,是一種透明的薄膜,在生產(chǎn)中覆蓋在掩膜版的表面。顧名思義,主要對掩膜版起物理與化學保護作用。

2024-01-04 標簽:光刻EUV芯片制程 1202 0

什么是摩爾定律,“摩爾定律2.0”從2D微型化到3D堆疊

什么是摩爾定律,“摩爾定律2.0”從2D微型化到3D堆疊

在3D實現(xiàn)方面,存儲器比邏輯更早進入實用階段。NAND閃存率先邁向3D 。隨著目前量產(chǎn)的20-15nm工藝,所有公司都放棄了小型化,轉(zhuǎn)而轉(zhuǎn)向存儲單元的三...

2023-12-02 標簽:集成電路英特爾摩爾定律 1615 0

查看更多>>

euv帖子

查看更多>>

euv資訊

日本首臺EUV光刻機就位

日本首臺EUV光刻機就位

據(jù)日經(jīng)亞洲 12 月 19 日報道,Rapidus 成為日本首家獲得極紫外 (EUV) 光刻設備的半導體公司,已經(jīng)開始在北海道芯片制造廠內(nèi)安裝極紫外光刻...

2024-12-20 標簽:光刻機EUV 39 0

美投資8.25億美元建設NSTC關鍵設施,重點發(fā)展EUV光刻技術

拜登政府已宣布一項重大投資決策,計劃在紐約州的奧爾巴尼市投入8.25億美元,用于建設國家半導體技術中心(NSTC)的核心設施。據(jù)美國商務部透露,奧爾巴尼...

2024-11-01 標簽:光刻技術EUVASML 350 0

美光預測AI需求將大幅增長,計劃2025年投產(chǎn)EUV DRAM

隨著人工智能技術日益普及,從云端服務器拓展至消費級設備,對高級內(nèi)存的需求持續(xù)攀升。鑒于此趨勢,美光科技已將其高帶寬內(nèi)存(HBM)的全部產(chǎn)能規(guī)劃至2025...

2024-10-26 標簽:美光人工智能EUV 690 0

ASML CEO傅恪禮:亞洲將繼續(xù)主導芯片行業(yè)

ASML總裁兼CEO傅恪禮近日在接受外媒采訪時指出,盡管西方國家正在積極增加芯片生產(chǎn),但亞洲在芯片行業(yè)中的主導地位不太可能發(fā)生改變。

2024-10-10 標簽:芯片EUVASML 455 0

新型EUVL技術問世,超越半導體制造標準線

新型EUVL技術問世,超越半導體制造標準線

來源:Trend Force 據(jù)STDaily援引日本沖繩科學技術研究生院(OIST)官網(wǎng)近日報道稱,該大學設計出一種超越半導體制造標準邊界的極紫外(E...

2024-08-06 標簽:半導體EUV 314 0

日本大學研發(fā)出新極紫外(EUV)光刻技術

近日,日本沖繩科學技術大學院大學(OIST)發(fā)布了一項重大研究報告,宣布該校成功研發(fā)出一種突破性的極紫外(EUV)光刻技術。這一創(chuàng)新技術超越了當前半導體...

2024-08-03 標簽:光刻技術EUV 978 0

一種無透鏡成像的新方法

一種無透鏡成像的新方法

使用OAM-HHG EUV光束對高度周期性結構進行成像的EUV聚光顯微鏡 為了研究微電子或光子元件中的納米級圖案,一種基于無透鏡成像的新方法可以實現(xiàn)近乎...

2024-07-19 標簽:激光成像EUV 370 0

半導體產(chǎn)業(yè)競速:Hyper-NA EUV光刻機挑戰(zhàn)與機遇并存

在科技日新月異的今天,半導體產(chǎn)業(yè)作為信息技術的基石,正以前所未有的速度向前躍進。隨著人工智能、汽車電子等新興產(chǎn)業(yè)的蓬勃發(fā)展,對芯片制造技術的要求也日益嚴...

2024-07-03 標簽:半導體光刻機EUV 2408 0

ASML擬于2030年推出Hyper-NA EUV光刻機,將芯片密度限制再縮小

ASML再度宣布新光刻機計劃。據(jù)報道,ASML預計2030年推出的Hyper-NA極紫外光機(EUV),將縮小最高電晶體密度芯片的設計限制。 ASML前...

2024-06-18 標簽:光刻機EUVASML 492 0

替代EUV光刻,新方案公布!

來源:半導體行業(yè)觀察,謝謝 編輯:感知芯視界 Link 隨著英特爾、三星、臺積電以及日本即將落成的先進晶圓代工廠 Rapidus盡管各家公司都各自準備將...

2024-06-17 標簽:光刻EUV 530 0

查看更多>>

euv數(shù)據(jù)手冊

相關標簽

相關話題

換一批
  • 拆解
    拆解
    +關注
      手機拆解過程,展示手機內(nèi)部零件及結構。一輛報廢汽車的廢電瓶、廢油液進行無害化處理,再拆解出可以利用的零部件后,整個車架被送進一個巨大的破碎“神器”內(nèi),瞬間進行拆解破碎。
  • 3D打印
    3D打印
    +關注
    3D打?。?DP)即快速成型技術的一種,它是一種以數(shù)字模型文件為基礎,運用粉末狀金屬或塑料等可粘合材料,通過逐層打印的方式來構造物體的技術。
  • 貿(mào)澤電子
    貿(mào)澤電子
    +關注
    貿(mào)澤電子是一家全球知名的半導體和電子元器件授權分銷商,分銷1100多家品牌制造商的產(chǎn)品。貿(mào)澤電子專注于快速引入新產(chǎn)品和新技術,為設計工程師和采購人員提供引領潮流的選擇。
  • OGS
    OGS
    +關注
    OGS觸摸屏是在保護玻璃上直接形成ITO導電膜及傳感器的一種技術下制作的電子產(chǎn)品保護屏。一塊玻璃同時起到保護玻璃和觸摸傳感器的雙重作用。
  • 14nm
    14nm
    +關注
  • 寒武紀
    寒武紀
    +關注
    寒武紀是目前國際上少數(shù)幾家全面系統(tǒng)掌握了通用型智能芯片及其基礎系統(tǒng)軟件研發(fā)和產(chǎn)品化核心技術的企業(yè)之一,能提供云邊端一體、軟硬件協(xié)同、訓練推理融合、具備統(tǒng)一生態(tài)的系列化智能芯片產(chǎn)品和平臺化基礎系統(tǒng)軟件。
  • 半導體芯片
    半導體芯片
    +關注
    半導體芯片:在半導體片材上進行浸蝕,布線,制成的能實現(xiàn)某種功能的半導體器件。不只是硅芯片,常見的還包括砷化鎵(砷化鎵有毒,所以一些劣質(zhì)電路板不要好奇分解它),鍺等半導體材料。半導體也像汽車有潮流。二十世紀七十年代,因特爾等美國企業(yè)在動態(tài)隨機存取內(nèi)存(D-RAM)市場占上風。
  • EnOcean
    EnOcean
    +關注
    德國易能森有限公司(EnOcean GmbH)是無線能量采集技術的開創(chuàng)者。2012年3月,國際電工技術委員會將EnOcean無線通信標準采納為國際標準“ISO/IEC 14543-3-10”,這也是世界上唯一使用能量采集技術的無線國際標準。
  • Heilind
    Heilind
    +關注
    Heilind為電子行業(yè)各細分市場的原始設備制造商和合約制造商提供支持,供應來自業(yè)界頂尖制造商的產(chǎn)品,涵蓋25個不同元器件類別,并特別專注于互連與機電產(chǎn)品。其主要分銷產(chǎn)品包括互連器件、繼電器、風扇、開關和傳感器、電路保護與熱管理、套管和線束產(chǎn)品、晶體與振蕩器。
  • 4K
    4K
    +關注
  • 黃仁勛
    黃仁勛
    +關注
    揭開Nvidia CEO 黃仁勛傳奇人生
  • 安卓
    安卓
    +關注
    Android是一種基于Linux的自由及開放源代碼的操作系統(tǒng),主要使用于移動設備,如智能手機和平板電腦,由Google公司和開放手機聯(lián)盟領導及開發(fā)。尚未有統(tǒng)一中文名稱,中國大陸地區(qū)較多人使用“安卓”或“安致”。Android操作系統(tǒng)最初由Andy Rubin開發(fā),主要支持手機。2005年8月由Google收購注資。
  • 醫(yī)療機器人
    醫(yī)療機器人
    +關注
    醫(yī)用機器人,是指用于醫(yī)院、診所的醫(yī)療或輔助醫(yī)療的機器人。是一種智能型服務機器人,它能獨自編制操作計劃,依據(jù)實際情況確定動作程序,然后把動作變?yōu)椴僮鳈C構的運動。
  • 瑞芯微
    瑞芯微
    +關注
    瑞芯微電子有限公司(Fuzhou Rockchips Electronics CO., Ltd)主要致力于數(shù)字音視頻和廣播領域,為消費品生產(chǎn)廠家提供從芯片到系統(tǒng)SoC軟件的整體解決方案。主要產(chǎn)品線包括:數(shù)字音視頻處理芯片、語言復讀機主控芯片以及數(shù)字電調(diào)諧收音機控制芯片。
  • 赫聯(lián)電子
    赫聯(lián)電子
    +關注
    Heilind為電子行業(yè)各細分市場的原始設備制造商和合約制造商提供支持,供應來自業(yè)界頂尖制造商的產(chǎn)品,涵蓋25個不同元器件類別,特別專注于互聯(lián)和機電產(chǎn)品。
  • 盛思銳
    盛思銳
    +關注
  • RISC-V
    RISC-V
    +關注
    RISC-V是一個基于精簡指令集(RISC)原則的開源指令集架構(ISA),重點在于它是開源的,這是與另外兩個主流架構英特爾的 X86和軟銀的Arm最大區(qū)別。
  • 魏少軍
    魏少軍
    +關注
  • 柔性顯示
    柔性顯示
    +關注
    柔性顯示是使用了PHOLED磷光性OLED技術,這種技術的特點是,低功耗,體積小,直接可視柔性。
  • 5G芯片
    5G芯片
    +關注
  • 梁孟松
    梁孟松
    +關注
    梁孟松他是加州大學柏克萊分校電機博士,畢業(yè)后曾在美國處理器大廠AMD工作幾年,在四十歲那年加入臺積電,后來到三星,現(xiàn)在為中芯國際執(zhí)行長。
  • 紫光展銳
    紫光展銳
    +關注
    紫光展銳是我國集成電路設計產(chǎn)業(yè)的龍頭企業(yè),以生態(tài)為核心戰(zhàn)略,高舉5G和AI兩面技術旗幟,以價值、未來、服務為三個指向,為個人與社會的智能化服務。
  • 華為p10
    華為p10
    +關注
    北京時間2017年2月26日,華為終端在巴塞羅那世界移動通信大會2017(MWC)上發(fā)布發(fā)布了全新華為P系列智能手機——華為P10 & P10 Plus.
  • MACOM
    MACOM
    +關注
    MACOM是一家高性能模擬射頻、微波、毫米波和光電解決方案的領先供應商,總部位于美國馬薩諸塞州洛厄爾,擁有超過60年的歷史??偛吭O在美國洛厄爾,馬薩諸塞州。
  • 長江存儲
    長江存儲
    +關注
  • 安路科技
    安路科技
    +關注
    上海安路信息科技有限公司成立于2011年,總部位于浦東新區(qū)張江高科技園區(qū)。安路科技專注于為客戶提供高性價比的可編程邏輯器件(FPGA)、可編程系統(tǒng)級芯片(SOC)、定制化可編程芯片、及相關軟件設計工具和創(chuàng)新系統(tǒng)解決方案。
  • Uber
    Uber
    +關注
  • 驍龍835
    驍龍835
    +關注
    驍龍835(一般指高通驍龍?zhí)幚砥鳎┦且豢钣?017年初由高通廠商研發(fā)的支持Quick Charge 4.0快速充電技術的手機處理器。
  • 7nm
    7nm
    +關注
  • VEE
    VEE
    +關注

關注此標簽的用戶(8人)

Eureka裴旭軍 LYJZZZ McWings steve弟呼君 marshaaal Darby KIMSL 吳延平

編輯推薦廠商產(chǎn)品技術軟件/工具OS/語言教程專題

RM新时代网站-首页